靜磁學裏,必歐-沙伐定律(Biot-Savart Law)以方程式描述,電流在其周圍所產生的磁場。採用靜磁近似,當電流緩慢地隨時間而改變時(例如當載流導線緩慢地移動時),這定律成立,磁場與電流的大小、方向、距離有關[1]。必歐-沙伐定律是以法國物理學者尚-巴蒂斯特·必歐菲利克斯·沙伐命名。

本條目中,向量純量分別用粗體斜體顯示。例如,位置向量通常用 表示;而其大小則用 來表示。檢驗變數或場變數的標記的後面沒有單撇號「」;源變數的標記的後面有單撇號「」。
Thumb
尚-巴蒂斯特·必歐

必歐-沙伐定律表明,假設源位置為的微小線元素電流,則作用於場位置磁場

其中,是微小磁場(這篇文章簡稱磁通量密度為磁場),磁常數

已知電流密度,則有:

其中,為微小體積元素,是積分的體積。

流體力學中,以渦度對應電流、速度對應磁場強度,便可應用必歐-沙伐定律以計算渦線vortex line)導出的速度。

概念

必歐-沙伐定律適用於計算一個穩定電流所產生的磁場。這電流是連續流過一條導線的電荷,電流量不隨時間而改變,電荷不會在任意位置累積或消失。採用國際單位制,用方程式表示,

其中,是源電流,是積分路徑,是源電流的微小線元素。

應用這方程式,必須先選出磁場的場位置。固定這場位置,積分於源電流的路徑,就可以計算出在場位置的磁場。請注意,這定律的應用,隱性地依賴着磁場的疊加原理成立;也就是說,每一個微小線段的電流所產生的磁場,其向量的疊加和給出總磁場。對於電場和磁場,疊加原理成立,因為它們是一組線性微分方程式的解答。更明確地說,它們是麥克斯韋方程組的解答。

當電流可以近似為流過無窮細狹導線,上述這方程式是正確的。但假若導線是寬厚的,則可用包含導線體積的積分方程式:

其中,電流密度是微小體積元素。

必歐-沙伐定律是靜磁學的基本定律,在靜磁學的地位,類同於庫侖定律之於靜電學。必歐-沙伐定律和安培定律的關係,則如庫侖定律之於高斯定律

假若無法採用靜磁近似,例如當電流隨着時間變化太快,或當導線快速地移動時,就不能使用必歐-沙伐定律,必須改用傑斐緬柯方程式

等速運動的點電荷所產生的電場和磁場

由於點電荷的運動不能形成電流,所以,必須使用推遲勢的方法來計算其電場和磁場。假設一個點電荷以等速度移動,在時間的位置為。那麼,麥克斯韋方程組給出此點電荷所產生的電場和磁場:

其中,之間的夾角。

時,電場和磁場可以近似為

這方程式最先由奧利弗·黑維塞於1888年推導出來,稱為必歐-沙伐點電荷定律[2]

安培定律和高斯磁定律的導引

這裏,我們要從必歐-沙伐定律推導出安培定律高斯磁定律[1][2]。若想查閱此證明,請點選「顯示」。

更多資訊 , ...
關閉
更多資訊 , 任意兩個向量 ...
關閉

參閱

參考文獻

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.