在物理學裏,多極展開(英語:Multipole expansion)廣泛應用於涉及於質量分佈產生的重力場、電荷分佈產生的電勢或電場、電流分佈產生的磁向量勢和磁場、電磁波的傳播的問題。使用多極展開,重力場或電勢等等,都可以表達為單極項、偶極項、四極項、八極項及更多項的疊加。一個典型的例如是,從原子核的外部多極矩與電子軌域的內部多極矩之間的交互作用能量,計算求得原子的原子核外多極矩。原子核的外多極矩可以得出原子核內部的電荷分佈,因為物理學家可以藉此研究原子核的形狀。
做理論運算時,在允許的誤差範圍內,時常可以只取多極展開的最低階的幾個非零項目,忽略其它項目,因為它們的數值極小。
場位置與源位置之間距離的倒數, ,可以用球諧函數 展開為[1]
- ;
其中, 與 的球坐標分別為 與 。
將這展開式代入電勢的方程式,則可得到
- 。
電荷分佈的球多極矩 以方程式定義為
- 。
則電勢可以以球多極矩表示為
- 。
注意到 。以下列出幾個最低階的球多極矩的表達式,以及與笛卡兒多極矩之間的關係[1]:
- 。
在靜磁學裏,設定電流密度分佈 ,則其產生的磁向量勢 為
- ;
其中, 是場位置, 是源位置。
將前面推導出的 在原點 的泰勒級數帶入磁向量勢方程式,則可得到
- 。
由於在靜磁學裏 ,
- ;
應用高斯散度定理,由於電流密度分佈 是局部的,假若積分體積 足夠大,則位於包含積分體積的曲面 的電流密度分佈為零:
- 。
所以,磁單極子項目 等於零。
磁偶極子項目不等於零。首先,應用高斯散度定理和電流密度分佈的局部性這事實,可以得到
- 。
注意到以下關係式:
- 。
定義磁偶極矩 為
- 。
只取至最低階項目,即磁偶極矩項目,則磁向量勢 為
- 。
多極展開在數值模擬領域用途很多。對於相互作用的粒子組成的物理系統,快速多極法(fast multipole method)是高效率運算這系統的能量與作用力常使用的一種方法[2]。快速多極法就是建構於格林函數的多極展開。這方法的基本點子是分解所有粒子為幾個小群,每一個小群內的粒子正常地互相作用(即通過全部勢能),而小群與小群之間的互相作用則是由其多極矩計算求得。快速多極矩法的效率通常與伊沃德求和法(Ewald summation)等同,但是假若系統的粒子具有高度群聚性,即高密度漲落,則快速多極矩法比較優等。
- 圓柱多極矩(cylindrical multipole moment)
- 四極磁鐵(quadrupole magnet):粒子加速器內部的一個配件
- 拉普拉斯展開(位勢論)(Laplace expansion (potential))
- 勒讓德多項式
Jackson, John David, Classical Electrodynamic 3rd., USA: John Wiley & Sons, Inc.: pp. 111, 145–151, 1999, ISBN 978-0-471-30932-1