热门问题
时间线
聊天
视角
康托尔集
位于一条线段上的一些点的集合 来自维基百科,自由的百科全书
Remove ads
在數學中,康托爾集(Cantor set)由德國數學家格奧爾格·康托爾在1883年引入[1][2](但由亨利·約翰·斯蒂芬·史密斯在1875年發現[3][4][5][6]),是位於一條線段上的一些點的集合,具有許多顯著和深刻的性質。通過考慮這個集合,康托爾和其他數學家奠定了現代點集拓撲學的基礎。雖然康托爾自己用一種一般、抽象的方法定義了這個集合,但是最常見的構造是康托爾三分點集,由去掉一條線段的中間三分之一得出。康托爾自己只附帶介紹了三分點集的構造,作為一個更加一般的想法——一個無處稠密的完備集的例子。

Remove ads
康托爾集的構造
康托爾集是由不斷去掉線段的中間三分之一的開集而得出。首先從區間中去掉中間的三分之一,留下兩條線段:。然後,把這兩條線段的中間三分之一都去掉,留下四條線段:。康托爾集就是由所有過程中沒有被去掉的區間中的點組成。這個過程可以由遞歸的方法描述,首先令:
則第步遞歸得到的結果:
, 對於
所以:
, 對於 .
下面的圖顯示了這個過程的最初六個步驟。
Remove ads
參見
- 康托爾函數
- 康托爾立方體
- 謝爾賓斯基地毯
- 科赫雪花
- 門格海綿
- 以豪斯多夫維度排序的分形列表
註釋
參考文獻
外部連結
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads