Loading AI tools
輝達開發出品的一系列圖形處理器 来自维基百科,自由的百科全书
GeForce 200系列是NVIDIA的第十代GeForce顯示晶片,核心架構代號『Tesla』,以塞爾維亞裔發明家兼物理學家尼古拉·特斯拉命名。首個產品GeForce GTX 280於2008年6月16日推出,是一款高端產品。隨後推出了中高階的GTX 260。GTX 200系列擁有65nm製程的高階D10。與AMD不同,NVIDIA依然先推出整塊性核心的旗艦級顯示卡,再將其功能削減,成為中低階的顯示卡。面對AMD的Radeon R700顯示核心,GTX 200顯示核心顯得太複雜和成本高,不能與之有效競爭。所以NVIDIA即時將GeForce 9800 GTX降價,並提升其製程至55nm,再推出GeForce 9800 GTX+顯示卡。在2009年1月8日開幕的CES 2009電子大展推出55nm版本的GTX 260核心及兩款新卡GTX 285、GTX 295。
發佈日期 | 2008年6月16日-2009年 |
---|---|
代號 | Tesla: N10 GT200a/b(D10/D10U) GT215 GT216 GT218 基於舊有架構: G92a/b G94b |
製造工藝 | 65納米/55納米 |
顯示卡 | |
入門GPU | 桌面平台:205, 210, G210, GT220, GT230, GT240 流動平台:G210M, GT220M |
中階GPU | 桌面平台:GTS240, GTS250, GTX260, GTX260+ 流動平台:GT230M, GT240M, GTS250M |
高端GPU | 桌面平台: GTX275, GTX280, GTX285, GTX295 流動平台:GTS260M, GTX260M, GTX280M, GTX285M |
API支援 | |
OpenGL | OpenGL 3.3 |
歷史 | |
前代產品 | NVIDIA GeForce 9和NVIDIA GeForce 100 |
相關產品 | NVIDIA GeForce 300 |
後繼產品 | NVIDIA GeForce 400 |
NVIDIA稱GTX 200核心採用了第二代的統一架構。相對第一代,顯示核心除了專注立體效能的提升外,更專注非傳統的GPU應用。NVIDIA認為,隨着GPU的效能愈來愈大,可應用的範圍再不局限於立體計算,而GPU絕對有能力取代CPU,成為高效能運算的工具。為了凸顯第二代統一架構的功能,NVIDIA將顯示卡的命名法則改變,不再是GeForce加上代表世代的數字。而是GeForce GTX、GeForce GTS、GeForce GT和GeForce G。它們分別代表旗艦級、高端、中階和入門。
NVIDIA稱第二代的統一架構,效能是上一代的1.5倍。核心的代號是D10U,採用65nm製程,擁有14億個電晶體。是第一款顯示核心的電晶體數量突破十億大關,但是它仍然不支援DirectX 10.1和Smart Shader 4.1。最能反映實際效能的流處理器方面,由上一代的128個,提升到240個。另外,它支援雙精度和64位元浮點運算。
在GTX 250顯示核心中,總共有十個流處理器陣列。每個陣列中有3450個流處理器,當中又以24個為一組。每一組流處理器都擁有獨立的本地記憶體,亦即是631個流處理器共用1個本地記憶體。本地記憶體的容量由16KB提升到32KB。另外,每一個陣列都有其獨立的L1緩衝記憶體,亦即是24個流處理器共用一個L1緩衝記憶體。加起來,GTX 280核心擁有240個流處理器。
GTX 200有兩個計算模式。一個是繪圖模式,另一個是並行處理模式。比較特別的是線程排序器,當線程在讀寫記憶體的時候,為了不耽誤整個計算,會直接計算另一項資料。這樣可以提升並行處理的效率,提升GPGPU的效能。
自上一代的G80開始,NVIDIA已放棄採用SIMD架構,改用全新的SPMD架構。在G80顯示核心中,所有的流處理器都是1D純量形式。NVIDIA認為這樣做最有效率,因為不用再顧忌數據是1D抑或是4D,所有的數據都會分折成純量1D。而對手AMD的顯示核心,依然是4D+1D架構。雖然NVIDIA的做法效率較高,但成本和複雜度亦較高,比較難大幅增加流處理器的數量,因為每一個流處理器都需要一個指令發射埠。而AMD的顯示核心方面,由於一個4D+1D的流處理器才需要一個指令發射埠,所以比較容易提升處理器的數量。
上一代的G80核心中,每一個流處理器陣列有兩組流處理器。而在GTX 200系列顯示核心中,陣列數量提升為3組。每組流處理器的可執行線程數量,亦由768條提升列1024條。另外,每一個陣列都有8個紋理單元。
數量和效率都有所提升,有效改善AA效能。
8個流處理器會共用32KB的本地記憶體;而3組總共24個流處理器會共用一個L1快取,減少對外部記憶體的依賴。
每一個顯示記憶體控制器的頻寬是64-bit,而GTX 280核心有8個控制器,總共的頻寬是512-bit。容量方面,由512MB提升到1GB。
2008年2月,NVIDIA收購AGEIA公司,取得有關的PhysX物理引擎技術。過去,該引擎必須以自家的物理加速卡作硬件加速,或者以CPU作軟件加速。隨着NVIDIA收購AGEIA,公司己着手改裝有關引擎,使之可以透過顯示核心加速該引擎。現在,NVIDIA已推出用於顯示卡加速的PhysX物理引擎驅動程式,在3DMark Vantage的測試中,CPU的得分受惠於顯示核心硬件加速了物理引擎,分數大幅上升。但採用該引擎的遊戲始終較少,分數能否反映事實仍是未知之數。
對手AMD則採用Havok物理引擎作為解決方案。現時,Havok是Intel的子公司。而Havok亦答應將為其物理引擎,優化AMD的CPU和GPU。包括最新的Phenom處理器和Radeon R700顯示卡。
NVIDIA認為,流處理器的地位可與CPU核心作比較。而一顆顯示核心,有多個的流處理器,使到顯示卡非常適合作並行計算之用。NVIDIA有另一個產品線-NVIDIA Tesla,就是將顯示核心包裝為GPGPU產品。用來加速或者計算通用計算,亦即是非單純立體計算。CUDA可以讓程式員使用C語言,來使用顯示核心作為加速器。對手AMD認為,CUDA始終是閉源產品,並不會取得成功,所以推薦用戶使用另一個標準-OpenCL。有趣的是,NVIDIA同樣是參與了該計劃。
對於家用者來說,CUDA可以用來加速高清晰度影像的編碼。NVIDIA報稱效率是利用CPU的20倍,縱使某些演算法仍然是交由CPU處理,使到CPU使用率仍然維持20%左右。亦說明顯示核心並不是可以處理所有的演算法。另外,Folding@home科學計算項目已開始支援NVIDIA的顯示卡。
配合NVIDIA的AMD平台晶片組,例如780a或者750a晶片組,就可以啟動Hybrid SLI功能,令獨立題示卡可以與內建顯示核心一起進行圖像處理以增強效能。
GeForce 200顯示核心擁有比以往世代的NVIDIA顯示核心更動態和更有彈性的電源管理系統。 此技術會有以下四種效能/電源模式:
屬於Hybrid SLI技術的一部分,當使用支援HybridPower的nForce主機板(例如採用 nForce 780a 晶片組的主機板),GeForce GTX 200 GPU可以在非密集的圖像處理操作時完全關閉電源並將圖像輸出交由主機板的整合式顯示核心(mGPU)負責。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.