在機率論和統計學裏,F-分佈(F-distribution)是一種連續機率分佈,[1][2][3][4]被廣泛應用於似然比率檢驗,特別是ANOVA中。 快速預覽 參數, 值域 ...F分佈 機率密度函數 累積分佈函數參數 d 1 > 0 , d 2 > 0 {\displaystyle d_{1}>0,\ d_{2}>0} 自由度值域 x ∈ [ 0 ; + ∞ ) {\displaystyle x\in [0;+\infty )\!} 機率密度函數 ( d 1 x ) d 1 d 2 d 2 ( d 1 x + d 2 ) d 1 + d 2 x B ( d 1 2 , d 2 2 ) {\displaystyle {\frac {\sqrt {\frac {(d_{1}\,x)^{d_{1}}\,\,d_{2}^{d_{2}}}{(d_{1}\,x+d_{2})^{d_{1}+d_{2}}}}}{x\,\mathrm {B} \!\left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\!} 累積分佈函數 I d 1 x d 1 x + d 2 ( d 1 / 2 , d 2 / 2 ) {\displaystyle I_{\frac {d_{1}x}{d_{1}x+d_{2}}}(d_{1}/2,d_{2}/2)\!} 期望值 d 2 d 2 − 2 {\displaystyle {\frac {d_{2}}{d_{2}-2}}\!} for d 2 > 2 {\displaystyle d_{2}>2} 眾數 d 1 − 2 d 1 d 2 d 2 + 2 {\displaystyle {\frac {d_{1}-2}{d_{1}}}\;{\frac {d_{2}}{d_{2}+2}}\!} for d 1 > 2 {\displaystyle d_{1}>2} 變異數 2 d 2 2 ( d 1 + d 2 − 2 ) d 1 ( d 2 − 2 ) 2 ( d 2 − 4 ) {\displaystyle {\frac {2\,d_{2}^{2}\,(d_{1}+d_{2}-2)}{d_{1}(d_{2}-2)^{2}(d_{2}-4)}}\!} for d 2 > 4 {\displaystyle d_{2}>4} 偏度 ( 2 d 1 + d 2 − 2 ) 8 ( d 2 − 4 ) ( d 2 − 6 ) d 1 ( d 1 + d 2 − 2 ) {\displaystyle {\frac {(2d_{1}+d_{2}-2){\sqrt {8(d_{2}-4)}}}{(d_{2}-6){\sqrt {d_{1}(d_{1}+d_{2}-2)}}}}\!} for d 2 > 6 {\displaystyle d_{2}>6} 峰度 見下文關閉 定義 如果隨機變量 X 有參數為 d1 和 d2 的 F-分佈,我們寫作 X ~ F(d1, d2)。那麼對於實數 x ≥ 0,X 的機率密度函數 (pdf)是 f ( x ; d 1 , d 2 ) = ( d 1 x ) d 1 d 2 d 2 ( d 1 x + d 2 ) d 1 + d 2 x B ( d 1 2 , d 2 2 ) = 1 B ( d 1 2 , d 2 2 ) ( d 1 d 2 ) d 1 2 x d 1 2 − 1 ( 1 + d 1 d 2 x ) − d 1 + d 2 2 {\displaystyle {\begin{aligned}f(x;d_{1},d_{2})&={\frac {\sqrt {\frac {(d_{1}\,x)^{d_{1}}\,\,d_{2}^{d_{2}}}{(d_{1}\,x+d_{2})^{d_{1}+d_{2}}}}}{x\,\mathrm {B} \!\left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\\&={\frac {1}{\mathrm {B} \!\left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}\left({\frac {d_{1}}{d_{2}}}\right)^{\frac {d_{1}}{2}}x^{{\frac {d_{1}}{2}}-1}\left(1+{\frac {d_{1}}{d_{2}}}\,x\right)^{-{\frac {d_{1}+d_{2}}{2}}}\end{aligned}}} 這裏 B {\displaystyle \mathrm {B} } 是B函數。在很多應用中,參數 d1 和 d2 是正整數,但對於這些參數為正實數時也有定義。 累積分佈函數為 F ( x ; d 1 , d 2 ) = I d 1 x d 1 x + d 2 ( d 1 2 , d 2 2 ) , {\displaystyle F(x;d_{1},d_{2})=I_{\frac {d_{1}x}{d_{1}x+d_{2}}}\left({\tfrac {d_{1}}{2}},{\tfrac {d_{2}}{2}}\right),} 其中 I 是正則不完全貝塔函數。 右邊表格中已給出期望值、方差和偏度;對於 d 2 > 8 {\displaystyle d_{2}>8} ,峰度為: γ 2 = 12 d 1 ( 5 d 2 − 22 ) ( d 1 + d 2 − 2 ) + ( d 2 − 4 ) ( d 2 − 2 ) 2 d 1 ( d 2 − 6 ) ( d 2 − 8 ) ( d 1 + d 2 − 2 ) {\displaystyle \gamma _{2}=12{\frac {d_{1}(5d_{2}-22)(d_{1}+d_{2}-2)+(d_{2}-4)(d_{2}-2)^{2}}{d_{1}(d_{2}-6)(d_{2}-8)(d_{1}+d_{2}-2)}}} . 特徵 一個F-分佈的隨機變量是兩個卡方分佈變量除以自由度的比率: U 1 / d 1 U 2 / d 2 = U 1 / U 2 d 1 / d 2 {\displaystyle {\frac {U_{1}/d_{1}}{U_{2}/d_{2}}}={\frac {U_{1}/U_{2}}{d_{1}/d_{2}}}} 其中: U1和U2呈卡方分佈,它們的自由度(degree of freedom)分別是d1和d2。 U1和U2是相互獨立的。 參見 F檢驗 參考文獻Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.