基於變換器的雙向編碼器表示技術(英語:Bidirectional Encoder Representations from Transformers,BERT)是用於自然語言處理(NLP)的預訓練技術,由Google提出。[1][2]2018年,雅各布·德夫林和同事建立並發佈了BERT。Google正在利用BERT來更好地理解用戶搜尋陳述式的語意。[3] 2020年的一項文獻調查得出結論:「在一年多一點的時間裏,BERT已經成為NLP實驗中無處不在的基線」,算上分析和改進模型的研究出版物超過150篇。[4]
最初的英語BERT發佈時提供兩種類型的預訓練模型[1]:(1)BERTBASE模型,一個12層,768維,12個自注意頭(self attention head),110M參數的神經網絡結構;(2)BERTLARGE模型,一個24層,1024維,16個自注意頭,340M參數的神經網絡結構。兩者的訓練語料都是BooksCorpus[5]以及英語維基百科語料,單詞量分別是8億以及25億。[6]
BERT的核心部分是一個Transformer模型,其中編碼層數和自注意力頭數量可變。結構與Vaswani等人(2017)[7]的實現幾乎「完全一致」。
BERT在兩個任務上進行預訓練: 語言模型(15%的token被掩蓋,BERT需要從上下文中進行推斷)和下一句預測(BERT需要預測給定的第二個句子是否是第一句的下一句)。訓練完成後,BERT學習到單詞的上下文嵌入。代價昂貴的預訓練完成後,BERT可以使用較少的資源和較小的數據集在下游任務上進行微調,以改進在這些任務上的效能。[1][8]
BERT在以下自然語言理解任務上的效能表現得最為卓越:[1]
- GLUE(General Language Understanding Evaluation,通用語言理解評估)任務集(包括9個任務)。
- SQuAD(Stanford Question Answering Dataset,史丹福問答數據集)v1.1和v2.0。
- SWAG(Situations With Adversarial Generation,對抗生成的情境)。
有關BERT在上述自然語言理解任務中為何可以達到先進水平,目前還未找到明確的原因[9][10]。目前BERT的可解釋性研究主要集中在研究精心選擇的輸入序列對BERT的輸出的影響關係,[11][12]通過探測分類器分析內部向量表示,[13][14]以及注意力權重表示的關係。[9][10]
BERT起源於預訓練的上下文表示學習,包括半監督序列學習(Semi-supervised Sequence Learning)[15],生成預訓練(Generative Pre-Training),ELMo[16]和ULMFit[17]。與之前的模型不同,BERT是一種深度雙向的、無監督的語言表示,且僅使用純文字語料庫進行預訓練的模型。上下文無關模型(如word2vec或GloVe)為詞彙表中的每個單詞生成一個詞向量表示,因此容易出現單詞的歧義問題。BERT考慮到單詞出現時的上下文。例如,詞「水分」的word2vec詞向量在「植物需要吸收水分」和「財務報表裏有水分」是相同的,但BERT根據上下文的不同提供不同的詞向量,詞向量與句子表達的句意有關。
2019年10月25日,Google搜尋宣佈他們已經開始在美國國內的英語搜尋查詢中應用BERT模型。[18]2019年12月9日,據報道,Google搜尋已經在70多種語言的搜尋採用了BERT。[19] 2020年10月,幾乎每一個基於英語的查詢都由BERT處理。[20]
在2019年計算語言學協會北美分會(NAACL)年會上,BERT獲得了最佳長篇論文獎。[21]
Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018-10-11. arXiv:1810.04805v2 [cs.CL].
Zhu, Yukun; Kiros, Ryan; Zemel, Rich; Salakhutdinov, Ruslan; Urtasun, Raquel; Torralba, Antonio; Fidler, Sanja. Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books: 19–27. 2015. arXiv:1506.06724 [cs.CV].
Annamoradnejad, Issa. ColBERT: Using BERT Sentence Embedding for Humor Detection. 2020-04-27. arXiv:2004.12765 [cs.CL].
Polosukhin, Illia; Kaiser, Lukasz; Gomez, Aidan N.; Jones, Llion; Uszkoreit, Jakob; Parmar, Niki; Shazeer, Noam; Vaswani, Ashish. Attention Is All You Need. 2017-06-12. arXiv:1706.03762 [cs.CL].
Kovaleva, Olga; Romanov, Alexey; Rogers, Anna; Rumshisky, Anna. Revealing the Dark Secrets of BERT. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). November 2019: 4364–4373 [2020-10-19]. doi:10.18653/v1/D19-1445. (原始內容存檔於2020-10-20) (美國英語).
Clark, Kevin; Khandelwal, Urvashi; Levy, Omer; Manning, Christopher D. What Does BERT Look at? An Analysis of BERT's Attention. Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (Stroudsburg, PA, USA: Association for Computational Linguistics). 2019: 276–286.
Khandelwal, Urvashi; He, He; Qi, Peng; Jurafsky, Dan. Sharp Nearby, Fuzzy Far Away: How Neural Language Models Use Context. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (Stroudsburg, PA, USA: Association for Computational Linguistics). 2018: 284–294. Bibcode:2018arXiv180504623K. arXiv:1805.04623 . doi:10.18653/v1/p18-1027.
Gulordava, Kristina; Bojanowski, Piotr; Grave, Edouard; Linzen, Tal; Baroni, Marco. Colorless Green Recurrent Networks Dream Hierarchically. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) (Stroudsburg, PA, USA: Association for Computational Linguistics). 2018: 1195–1205. Bibcode:2018arXiv180311138G. arXiv:1803.11138 . doi:10.18653/v1/n18-1108.
Giulianelli, Mario; Harding, Jack; Mohnert, Florian; Hupkes, Dieuwke; Zuidema, Willem. Under the Hood: Using Diagnostic Classifiers to Investigate and Improve how Language Models Track Agreement Information. Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (Stroudsburg, PA, USA: Association for Computational Linguistics). 2018: 240–248. Bibcode:2018arXiv180808079G. arXiv:1808.08079 . doi:10.18653/v1/w18-5426.
Zhang, Kelly; Bowman, Samuel. Language Modeling Teaches You More than Translation Does: Lessons Learned Through Auxiliary Syntactic Task Analysis. Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (Stroudsburg, PA, USA: Association for Computational Linguistics). 2018: 359–361. doi:10.18653/v1/w18-5448.
Peters, Matthew; Neumann, Mark; Iyyer, Mohit; Gardner, Matt; Clark, Christopher; Lee, Kenton; Luke, Zettlemoyer. Deep contextualized word representations. 2018-02-15. arXiv:1802.05365v2 [cs.CL].
Howard, Jeremy; Ruder, Sebastian. Universal Language Model Fine-tuning for Text Classification. 2018-01-18. arXiv:1801.06146v5 [cs.CL].