令 為區域 的參考組態,令其運動及形變梯度為

令 .
則目前組態及參考組態的積分有以下的關係
![{\displaystyle \int _{\Omega (t)}\mathbf {f} (\mathbf {x} ,t)~{\text{dV}}=\int _{\Omega _{0}}\mathbf {f} [{\boldsymbol {\varphi }}(\mathbf {X} ,t),t]~J(\mathbf {X} ,t)~{\text{dV}}_{0}=\int _{\Omega _{0}}{\hat {\mathbf {f} }}(\mathbf {X} ,t)~J(\mathbf {X} ,t)~{\text{dV}}_{0}~.}](//wikimedia.org/api/rest_v1/media/math/render/svg/4a49b5532c9a31af8181b530f93ce95d8880ab0d)
That this derivation is for a material element is implicit in the time constancy of the reference configuration: it is constant in material coordinates. 針對體積積分的微分定義為

將上式轉換為對參考組態的積分,可得

因為 和時間無關,可得
![{\displaystyle {\begin{aligned}{\cfrac {\mathrm {d} }{\mathrm {d} t}}\left(\int _{\Omega (t)}\mathbf {f} (\mathbf {x} ,t)~{\text{dV}}\right)&=\int _{\Omega _{0}}\left[\lim _{\Delta t\rightarrow 0}{\cfrac {{\hat {\mathbf {f} }}(\mathbf {X} ,t+\Delta t)~J(\mathbf {X} ,t+\Delta t)-{\hat {\mathbf {f} }}(\mathbf {X} ,t)~J(\mathbf {X} ,t)}{\Delta t}}\right]~{\text{dV}}_{0}\\&=\int _{\Omega _{0}}{\frac {\partial }{\partial t}}[{\hat {\mathbf {f} }}(\mathbf {X} ,t)~J(\mathbf {X} ,t)]~{\text{dV}}_{0}\\&=\int _{\Omega _{0}}\left({\frac {\partial }{\partial t}}[{\hat {\mathbf {f} }}(\mathbf {X} ,t)]~J(\mathbf {X} ,t)+{\hat {\mathbf {f} }}(\mathbf {X} ,t)~{\frac {\partial }{\partial t}}[J(\mathbf {X} ,t)]\right)~{\text{dV}}_{0}\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/dccf7b716b8f34767f136efbceb2832faa96de7e)
現在, 的時間導數為
[6]

因此
![{\displaystyle {\begin{aligned}{\cfrac {\mathrm {d} }{\mathrm {d} t}}\left(\int _{\Omega (t)}\mathbf {f} (\mathbf {x} ,t)~{\text{dV}}\right)&=\int _{\Omega _{0}}\left({\frac {\partial }{\partial t}}[{\hat {\mathbf {f} }}(\mathbf {X} ,t)]~J(\mathbf {X} ,t)+{\hat {\mathbf {f} }}(\mathbf {X} ,t)~J(\mathbf {X} ,t)~{\boldsymbol {\nabla }}\cdot \mathbf {v} (\mathbf {x} ,t)\right)~{\text{dV}}_{0}\\&=\int _{\Omega _{0}}\left({\frac {\partial }{\partial t}}[{\hat {\mathbf {f} }}(\mathbf {X} ,t)]+{\hat {\mathbf {f} }}(\mathbf {X} ,t)~{\boldsymbol {\nabla }}\cdot \mathbf {v} (\mathbf {x} ,t)\right)~J(\mathbf {X} ,t)~{\text{dV}}_{0}\\&=\int _{\Omega (t)}\left({\dot {\mathbf {f} }}(\mathbf {x} ,t)+\mathbf {f} (\mathbf {x} ,t)~{\boldsymbol {\nabla }}\cdot \mathbf {v} (\mathbf {x} ,t)\right)~{\text{dV}}\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/8fb723181cce1321f237c980778b89bc72717f7d)
其中 為 的材料導數,現在材料導數為
![{\displaystyle {\dot {\mathbf {f} }}(\mathbf {x} ,t)={\frac {\partial \mathbf {f} (\mathbf {x} ,t)}{\partial t}}+[{\boldsymbol {\nabla }}\mathbf {f} (\mathbf {x} ,t)]\cdot \mathbf {v} (\mathbf {x} ,t)~.}](//wikimedia.org/api/rest_v1/media/math/render/svg/0527b00dc98359f37547adb6ed77d26e9b65d5de)
因此
![{\displaystyle {\cfrac {\mathrm {d} }{\mathrm {d} t}}\left(\int _{\Omega (t)}\mathbf {f} (\mathbf {x} ,t)~{\text{dV}}\right)=\int _{\Omega (t)}\left({\frac {\partial \mathbf {f} (\mathbf {x} ,t)}{\partial t}}+[{\boldsymbol {\nabla }}\mathbf {f} (\mathbf {x} ,t)]\cdot \mathbf {v} (\mathbf {x} ,t)+\mathbf {f} (\mathbf {x} ,t)~{\boldsymbol {\nabla }}\cdot \mathbf {v} (\mathbf {x} ,t)\right)~{\text{dV}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/7ccadc7aec02eeff04b0876b7d6c97d41f277add)
或者

利用以下的恆等式

可得

利用高斯散度定理及恆等式
,可得

|