數學上,陳-韋伊同態(英語:Chern–Weil homomorphism)是陳-韋伊理論的基本構造,將一個光滑流形M的曲率聯繫到M的德拉姆上同調群,也就是從幾何到拓撲。這個理論由陳省身和安德烈·韋伊於1940年代建立,是發展示性類理論的重要步驟。這個結果推廣了陳-高斯-博內定理。
為上的-值多項式的代數。設為在中G的伴隨作用的不動點的子代數,故對所有有
- 。
陳-韋伊同態是從到上同調代數的一個-代數同態。這個同態存在,且對M上任何主G-叢P有唯一定義。若G緊緻,則於此同態下,G-叢BG的分類空間的上同調環同構於不變多項式的代數:
對於如SL(n,R)的非緊緻群,可能有上同調類無不變多項式的表示。
同態的定義
取P 中任何聯絡形式w,設為相伴的曲率2-形式。若是k次齊次多項式,設 是P上的2k-形式,以下式給出
其中是2k個數的對稱群中置換的符號。(見普法夫值。)
可證
是閉形式,故
且的德拉姆上同調類獨立於在P上的聯絡的選取,故只依賴於主叢。
因此設
是由上從f得出的上同調類,故有代數同態
參考
- Bott, R., On the Chern–Weil homomorphism and the continuous cohomology of Lie groups, Advances in Math, 1973, 11: 289–303, doi:10.1016/0001-8708(73)90012-1.
- Chern, S.-S., Topics in Differential Geometry, Institute for Advanced Study, mimeographed lecture notes, 1951.
- Shiing-Shen Chern, Complex Manifolds Without Potential Theory (Springer-Verlag Press, 1995) ISBN 0-387-90422-0, ISBN 3-540-90422-0.
- The appendix of this book: "Geometry of Characteristic Classes" is a very neat and profound introduction to the development of the ideas of characteristic classes.
- Chern, S.-S.; Simons, J, Characteristic forms and geometric invariants, The Annals of Mathematics. Second Series, 1974, 99 (1): 48–69, JSTOR 1971013.
- Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry, Vol. 2, Wiley-Interscience, 1963new ed. 2004 .
- Narasimhan, M.; Ramanan, S., Existence of universal connections, Amer. J. Math., 1961, 83: 563–572, JSTOR 2372896, doi:10.2307/2372896.
- Morita, Shigeyuki, Geometry of Differential Forms, A.M.S monograph, 2000, 201.
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.