在統計學中,矩估計(英語:method of moments)是估計總體參數的方法。首先推導涉及感興趣的參數的總體矩(即所考慮的隨機變量的冪的期望值)的方程。然後取出一個樣本並從這個樣本估計總體矩。接着使用樣本矩取代(未知的)總體矩,解出感興趣的參數。從而得到那些參數的估計。矩估計是英國統計學家卡爾·皮爾森於1894年提出的。 此條目沒有列出任何參考或來源。 (2014年12月22日) 方法 假設問題是要估計表徵隨機變量 W {\displaystyle W} 的分佈 f W ( w ; θ ) {\displaystyle f_{W}(w;\theta )} 的 k {\displaystyle k} 個未知參數 θ 1 , θ 2 , … , θ k {\displaystyle \theta _{1},\theta _{2},\dots ,\theta _{k}} 。如果真實分佈("總體矩")的前 k {\displaystyle k} 階矩可以表示成這些 θ {\displaystyle \theta } 的函數: μ 1 ≡ E [ W ] = g 1 ( θ 1 , θ 2 , … , θ k ) , {\displaystyle \mu _{1}\equiv E[W]=g_{1}(\theta _{1},\theta _{2},\dots ,\theta _{k}),} μ 2 ≡ E [ W 2 ] = g 2 ( θ 1 , θ 2 , … , θ k ) , {\displaystyle \mu _{2}\equiv E[W^{2}]=g_{2}(\theta _{1},\theta _{2},\dots ,\theta _{k}),} ⋮ {\displaystyle \vdots } μ k ≡ E [ W k ] = g k ( θ 1 , θ 2 , … , θ k ) . {\displaystyle \mu _{k}\equiv E[W^{k}]=g_{k}(\theta _{1},\theta _{2},\dots ,\theta _{k}).} 設取出一大小為 n {\displaystyle n} 的樣本,得到 w 1 , … , w n {\displaystyle w_{1},\dots ,w_{n}} 。對於 j = 1 , … , k {\displaystyle j=1,\dots ,k} ,令 μ ^ j = 1 n ∑ i = 1 n w i j {\displaystyle {\hat {\mu }}_{j}={\frac {1}{n}}\sum _{i=1}^{n}w_{i}^{j}} 為j階樣本矩,是 μ j {\displaystyle \mu _{j}} 的估計。 θ 1 , θ 2 , … , θ k {\displaystyle \theta _{1},\theta _{2},\dots ,\theta _{k}} 的矩估計量記為 θ ^ 1 , θ ^ 2 , … , θ ^ k {\displaystyle {\hat {\theta }}_{1},{\hat {\theta }}_{2},\dots ,{\hat {\theta }}_{k}} ,由這些方程的解(如果存在)定義:[來源請求] μ ^ 1 = g 1 ( θ ^ 1 , θ ^ 2 , … , θ ^ k ) , {\displaystyle {\hat {\mu }}_{1}=g_{1}({\hat {\theta }}_{1},{\hat {\theta }}_{2},\dots ,{\hat {\theta }}_{k}),} μ ^ 2 = g 2 ( θ ^ 1 , θ ^ 2 , … , θ ^ k ) , {\displaystyle {\hat {\mu }}_{2}=g_{2}({\hat {\theta }}_{1},{\hat {\theta }}_{2},\dots ,{\hat {\theta }}_{k}),} ⋮ {\displaystyle \vdots } μ ^ k = g k ( θ ^ 1 , θ ^ 2 , … , θ ^ k ) . {\displaystyle {\hat {\mu }}_{k}=g_{k}({\hat {\theta }}_{1},{\hat {\theta }}_{2},\dots ,{\hat {\theta }}_{k}).} 參見 廣義矩估計 點估計 估計量的偏誤 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.