Remove ads
来自维基百科,自由的百科全书
理想(Ideal)是一個環論中的概念。
若某環的子集為在原環加法的定義下的子群,且其中的元素在原環乘法下與任意原環中的元素結果都在該子群中,則稱其為原環的理想。
通俗地說,一環的理想在加法上成群且在乘法上表現如同一個黑洞。
理想把整數的某些子集,例如偶數或3的倍數組成的集合給一般化了。兩個偶數相加或相減結果仍是偶數,偶數與任意整數相乘的結果也仍是偶數;這些閉包和吸收的性質正是理想的定義。理想可以被用來構造商環,這類似於在群論里,正規子群可以被用來構造商群。
恩斯特·庫默爾提出了理想數的概念,以此作為那些不具有唯一因子分解的數環的「缺失」的因子。「理想」在這裏的意思是它只存在於想像中,可以類比在幾何中那些「理想」的幾何物件,比如無窮遠處的點。[1]隨後在1876年,理查德·戴德金在狄利克雷的數論講義書的第三版中用被稱為「理想」的數的集合代替了庫默爾之前未定義的概念。[1][2][3]之後這個概念被大衛·希爾伯特和艾米·諾特從數環拓展到了多項式環以及其他交換環上。
環(R,+,·),已知(R, +)是阿貝爾群。R的子集I稱為R的一個右理想,若I滿足:
類似地,I稱為R的左理想,若以下條件成立:
若I既是R的右理想,也是R的左理想,則稱I為R的雙邊理想,簡稱R上的理想。
如果 是環 的一個非空子集,令 , 其中
則 是環 的理想,這個理想稱為 中由 生成的理想, 稱為生成元集。同群的生成子群類似, 是 中所有包含 的理想的交,因此是 中包含 的最小理想。下面是生成理想的幾種特殊情況:
設集合A = {a1,a2,...,an},則記<A> = <a1,a2,...,an>,稱是有限生成理想。特別當是單元素集時,稱為環R的主理想。注意作為生成元一般不是唯一的,如。的一般形式是:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.