Remove ads
統計學名詞 来自维基百科,自由的百科全书
標準差,又稱標準偏差、均方差 (英語:standard deviation,縮寫SD,符號σ),在概率統計中最常使用作為測量一組數值的離散程度之用。標準差定義:為方差開主平方根,反映組內個體間的離散程度;標準差與期望值之比為標準離差率。測量到分佈程度的結果,原則上具有兩種性質:
一個總量的標準差或一個隨機變量的標準差,及一個子集合樣品數的標準差之間,有所差別。其公式如下所列。
標準差的概念由卡爾·皮爾森引入到統計中。
簡單來說,標準差是一組數值自平均值分散開來的程度的一種測量觀念。一個較大的標準差,代表大部分的數值和其平均值之間差異較大;一個較小的標準差,代表這些數值較接近平均值。
例如,兩組數的集合{0, 5, 9, 14}和{5, 6, 8, 9}其平均值都是7,但第二個集合具有較小的標準差。
表述「相差個標準差」,即在 的樣本(sample)範圍內考量。
標準差可以當作不確定性的一種測量。例如在物理科學中,做重複性測量時,測量數值集合的標準差代表這些測量的精確度。當要決定測量值是否符合預測值,測量值的標準差佔有決定性重要角色:如果測量平均值與預測值相差太遠(同時與標準差數值做比較),則認為測量值與預測值互相矛盾。這很容易理解,因為如果測量值都落在一定數值範圍之外,可以合理推論預測值是否正確。
標準差應用於投資上,可作為量度回報穩定性的指標。標準差數值越大,代表回報遠離過去平均數值,回報較不穩定故風險越高。相反,標準差數值越小,代表回報較為穩定,風險亦較小。
為平均值。
上述公式可以如下代換而簡化:
所以:
根號裏面,亦即方差()的簡易口訣為:「平方的平均」減去「平均的平方」。
一隨機變量的標準差定義為:
須注意並非所有隨機變量都具有標準差,因為有些隨機變量不存在期望值。 如果隨機變量為具有相同概率,則可用上述公式計算標準差。
若是由實數構成的離散隨機變量(英語:discrete random variable),且每個值的概率相等,則的標準差定義為:
換成用來寫,就成為:
目前為止,與總體標準差的基本公式一致。
然而若每個可以有不同概率,則的標準差定義為:
這裏,為的數學期望值。
若為概率密度的連續隨機變量(英語:continuous random variable),則的標準差定義為:
其中為的數學期望值:
對於常數和隨機變量和:
在真實世界中,找到一個總體的真實的標準差並不實際。大多數情況下,總體標準差是通過隨機抽取一定量的樣本並計算樣本標準差估計的。
從一大組數值當中取出一樣本數值組合,常定義其樣本標準差:
這裏示範如何計算一組數的標準差。例如一群孩童年齡的數值為{5, 6, 8, 9}:
則平均值為
在實際應用上,常考慮一組數據具有近似於正態分佈的概率分佈。若其假設正確,則約68%數值分佈在距離平均值有1個標準差之內的範圍,約95%數值分佈在距離平均值有2個標準差之內的範圍,以及約99.7%數值分佈在距離平均值有3個標準差之內的範圍。稱為「68-95-99.7法則」。
數字比率 標準差值 |
概率 | 包含之外比例 | |
---|---|---|---|
百分比 | 百分比 | 比例 | |
0.318 639σ | 25% | 75% | 3 / 4 |
490σ 0.674 | % 50 | % 50 | 1 / 2 |
458σ 0.994 | 68% | 32% | 1 / 3.125 |
1σ | 9492% 68.268 | 0508% 31.731 | 1 / 4872 3.151 |
552σ 1.281 | 80% | 20% | 1 / 5 |
854σ 1.644 | 90% | 10% | 1 / 10 |
964σ 1.959 | 95% | 5% | 1 / 20 |
2σ | 9736% 95.449 | 0264% 4.550 | 1 / 895 21.977 |
829σ 2.575 | 99% | 1% | 1 / 100 |
3σ | 0204% 99.730 | 9796% 0.269 | 1 / 370.398 |
527σ 3.290 | 99.9% | 0.1% | 1 / 1000 |
592σ 3.890 | 99.99% | 0.01% | 1 / 000 10 |
4σ | 666% 99.993 | 334% 0.006 | 1 / 787 15 |
173σ 4.417 | 99.999% | 0.001% | 1 / 000 100 |
σ 4.5 | 99.9993204653751% | 0.0006795346249% | 1 / 159.5358 147 3.4 / 000000 (每一邊) 1 |
638σ 4.891 | % 99.9999 | % 0.0001 | 1 / 000000 1 |
5σ | 9426697% 99.999 | 0573303% 0.000 | 1 / 744278 1 |
724σ 5.326 | 99% 99.999 | 01% 0.000 | 1 / 000000 10 |
729σ 5.730 | 999% 99.999 | 001% 0.000 | 1 / 000000 100 |
σ 6 | 9998027% 99.999 | 0001973% 0.000 | 1 / 797346 506 |
410σ 6.109 | 9999% 99.999 | 0001% 0.000 | 1 / 000000000 1 |
951σ 6.466 | 99999% 99.999 | 00001% 0.000 | 1 / 000000000 10 |
502σ 6.806 | 999999% 99.999 | 000001% 0.000 | 1 / 000000000 100 |
7σ | 99.9999999997440% | 000000256% 0.000 | 1 / 682215445 390 |
一組數據的平均值及標準差常常同時作為參考的依據。從某種意義上說,如果用平均值來考量數值的中心的話,則標準差也就是對統計的分散度的一個「自然」的測度。因為由平均值所得的標準差要小於到其他任何一個點的標準差。較確切的敘述為:設為實數,定義函數:
使用微積分或者通過配方法,不難算出在下面情況下具有唯一最小值:
從幾何學的角度出發,標準差可以理解為一個從維空間的一個點到一條直線的距離的函數。舉一個簡單的例子,一組數據中有3個值,。它們可以在3維空間中確定一個點。想像一條通過原點的直線。如果這組數據中的3個值都相等,則點就是直線上的一個點,到的距離為0,所以標準差也為0。若這3個值不都相等,過點作垂線垂直於,交於點,則的坐標為這3個值的平均數:
運用一些代數知識,不難發現點與點之間的距離(也就是點到直線的距離)是。在維空間中,這個規律同樣適用,把換成就可以了。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.