楊氏模量,也稱楊氏模數(英語:Young's modulus),一般將楊氏模量習慣稱爲彈性模量,是材料力學中的名詞。彈性材料承受正向應力時會產生正向應變,在形變量沒有超過對應材料的一定彈性限度時,定義正向應力與正向應變的比值為這種材料的楊氏模量。公式記為 E = σ ε {\displaystyle E={\frac {\sigma }{\varepsilon }}} 或是 P = E ⋅ ε ⋅ A {\displaystyle P=E\cdot {\varepsilon }\cdot A} 其中, E {\displaystyle E} 表示楊氏模量, σ {\displaystyle \sigma } 表示正向應力, P {\displaystyle P} 表示軸力, A {\displaystyle A} 表示斷面面積, ε {\displaystyle \varepsilon } 表示正向應變。 楊氏模量以英國科學家托馬斯·楊命名。 Remove ads各種材料的楊氏模量約值 楊氏模量取決於材料的組成。舉例來說,大部分金屬在合金成分不同、熱處理在加工過程中的應用,其楊氏模量值會有5%或者更大的波動。正如以下的很多材料的楊氏模量值非常接近。 更多資訊 楊氏模量 ( ... 不同固體的楊氏模量約值 材料 楊氏模量 ( E {\displaystyle E} ) / G {\displaystyle G} P a {\displaystyle Pa} 楊氏模量 ( E {\displaystyle E} ) / lbf/in² 橡膠(微小應變) 0.01-0.1 1,500-15,000 低密度聚乙烯 0.2 30,000 聚丙烯 1.5-2 217,000-290,000 聚對苯二甲酸乙二酯 2-2.5 290,000-360,000 聚苯乙烯 3-3.5 435,000-505,000 尼龍 2-4 290,000-580,000 橡木(顆粒表面) 11 1,600,000 高強度混凝土(受到壓縮) 30 4,350,000 金屬鎂 45 6,500,000 玻璃(所有種類) 71.7 10,400,000 鋁 69 10,000,000 黃銅和青銅 103-124 17,000,000 鈦 (Ti) 105-120 15,000,000-17,500,000 碳纖維強化塑料(單向,顆粒表面) 150 21,800,000 合金與鋼 190-210 30,000,000 鎢 (W) 400-410 58,000,000-59,500,000 碳化矽(SiC) 450 65,000,000 碳化鎢(WC) 450-650 65,000,000-94,000,000 單碳納米管[1] approx. 1,000 approx. 145,000,000 鑽石 1,050-1,200 150,000,000-175,000,000 關閉 Remove ads單位 楊氏模量的因次同壓強,在SI單位制中,壓力的單位為Pa也就是帕斯卡。 但是通常在工程的使用中,因各材料楊氏模量的量值都十分的大,所以常以百萬帕斯卡(MPa)或十億帕斯卡(GPa)作為其單位。 1 M P a = 1 × 10 6 P a = 1 N m m 2 {\displaystyle 1\ \mathrm {MPa} =\mathrm {1} \times 10^{6}\ \mathrm {Pa} =1\ {\begin{matrix}{\frac {\mathrm {N} }{\mathrm {mm} ^{2}}}\end{matrix}}} (1牛頓每平方毫米為1MPa) 1 G P a = 1 × 10 9 P a = 1 k N m m 2 {\displaystyle 1\ \mathrm {GPa} =\mathrm {1} \times 10^{9}\ \mathrm {Pa} =1\ {\begin{matrix}{\frac {\mathrm {kN} }{\mathrm {mm} ^{2}}}\end{matrix}}} (1千牛頓每平方毫米為1GPa) Remove ads參看 固體力學 連續介質力學 機械設計 剛度 硬度 撓度(Deflection) 形變(Deformation) 應變 應力 抗拉強度(Tensile strength) 韌性(Toughness) 降伏強度 虎克定律 蒲松氏比 參考文獻 [1]ELECTRONIC AND MECHANICAL PROPERTIES OF CARBON NANOTUBES (PDF). [2005-08-21]. (原始內容存檔 (PDF)於2005-10-29). 更多資訊 , ... 換算公式 均質各向同性線彈性材料具有獨特的彈性性質,因此知道彈性模量中的任意兩種,就可由下列換算公式求出其他所有的彈性模量。 ( λ , G ) {\displaystyle (\lambda ,\,G)} ( E , G ) {\displaystyle (E,\,G)} ( K , λ ) {\displaystyle (K,\,\lambda )} ( K , G ) {\displaystyle (K,\,G)} ( λ , ν ) {\displaystyle (\lambda ,\,\nu )} ( G , ν ) {\displaystyle (G,\,\nu )} ( E , ν ) {\displaystyle (E,\,\nu )} ( K , ν ) {\displaystyle (K,\,\nu )} ( K , E ) {\displaystyle (K,\,E)} ( M , G ) {\displaystyle (M,\,G)} K = {\displaystyle K=\,} λ + 2 G 3 {\displaystyle \lambda +{\tfrac {2G}{3}}} E G 3 ( 3 G − E ) {\displaystyle {\tfrac {EG}{3(3G-E)}}} λ ( 1 + ν ) 3 ν {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}} 2 G ( 1 + ν ) 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}} E 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {E}{3(1-2\nu )}}} M − 4 G 3 {\displaystyle M-{\tfrac {4G}{3}}} E = {\displaystyle E=\,} G ( 3 λ + 2 G ) λ + G {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}} 9 K ( K − λ ) 3 K − λ {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}} 9 K G 3 K + G {\displaystyle {\tfrac {9KG}{3K+G}}} λ ( 1 + ν ) ( 1 − 2 ν ) ν {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}} 2 G ( 1 + ν ) {\displaystyle 2G(1+\nu )\,} 3 K ( 1 − 2 ν ) {\displaystyle 3K(1-2\nu )\,} G ( 3 M − 4 G ) M − G {\displaystyle {\tfrac {G(3M-4G)}{M-G}}} λ = {\displaystyle \lambda =\,} G ( E − 2 G ) 3 G − E {\displaystyle {\tfrac {G(E-2G)}{3G-E}}} K − 2 G 3 {\displaystyle K-{\tfrac {2G}{3}}} 2 G ν 1 − 2 ν {\displaystyle {\tfrac {2G\nu }{1-2\nu }}} E ν ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}} 3 K ν 1 + ν {\displaystyle {\tfrac {3K\nu }{1+\nu }}} 3 K ( 3 K − E ) 9 K − E {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}} M − 2 G {\displaystyle M-2G\,} G = {\displaystyle G=\,} 3 ( K − λ ) 2 {\displaystyle {\tfrac {3(K-\lambda )}{2}}} λ ( 1 − 2 ν ) 2 ν {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}} E 2 ( 1 + ν ) {\displaystyle {\tfrac {E}{2(1+\nu )}}} 3 K ( 1 − 2 ν ) 2 ( 1 + ν ) {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}} 3 K E 9 K − E {\displaystyle {\tfrac {3KE}{9K-E}}} ν = {\displaystyle \nu =\,} λ 2 ( λ + G ) {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}} E 2 G − 1 {\displaystyle {\tfrac {E}{2G}}-1} λ 3 K − λ {\displaystyle {\tfrac {\lambda }{3K-\lambda }}} 3 K − 2 G 2 ( 3 K + G ) {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}} 3 K − E 6 K {\displaystyle {\tfrac {3K-E}{6K}}} M − 2 G 2 M − 2 G {\displaystyle {\tfrac {M-2G}{2M-2G}}} M = {\displaystyle M=\,} λ + 2 G {\displaystyle \lambda +2G\,} G ( 4 G − E ) 3 G − E {\displaystyle {\tfrac {G(4G-E)}{3G-E}}} 3 K − 2 λ {\displaystyle 3K-2\lambda \,} K + 4 G 3 {\displaystyle K+{\tfrac {4G}{3}}} λ ( 1 − ν ) ν {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}} 2 G ( 1 − ν ) 1 − 2 ν {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}} E ( 1 − ν ) ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}} 3 K ( 1 − ν ) 1 + ν {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}} 3 K ( 3 K + E ) 9 K − E {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}} 關閉Remove adsWikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for FirefoxRemove ads
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.