拉格朗日力學時常涉及廣義位勢,因為拉格朗日量 L {\displaystyle {\mathcal {L}}\,\!} 的廣義式定義包含了廣義位勢: L = T − V {\displaystyle {\mathcal {L}}=T-{\mathcal {V}}\,\!} ; 其中, V {\displaystyle {\mathcal {V}}\,\!} 是廣義位勢, T {\displaystyle T\,\!} 是動能。 定義廣義位勢為一個函數, V = V ( q 1 , q 2 , … , q N , q ˙ 1 , q ˙ 2 , … , q ˙ N , t ) {\displaystyle {\mathcal {V}}={\mathcal {V}}(q_{1},\ q_{2},\ \dots ,\ q_{N},\ {\dot {q}}_{1},\ {\dot {q}}_{2},\ \dots ,\ {\dot {q}}_{N},\ t)\,\!} , 滿足下述與廣義力 F {\displaystyle {\mathcal {F}}\,\!} 的關係: F i = − ∂ V ∂ q i + d d t ( ∂ V ∂ q i ˙ ) {\displaystyle {\mathcal {F}}_{i}=-{\frac {\partial {\mathcal {V}}}{\partial q_{i}}}+{\frac {d}{dt}}\left({\frac {\partial {\mathcal {V}}}{\partial {\dot {q_{i}}}}}\right)\,\!} ; 其中, q i {\displaystyle q_{i}\,\!} 是廣義坐標, q i ˙ {\displaystyle {\dot {q_{i}}}\,\!} 是廣義速度, t {\displaystyle t\,\!} 是時間。 假若一個物理系統滿足上述關係,此系統是單演系統。 假若一個單演系統的廣義位勢只跟廣義坐標有關, V = V ( q 1 , q 2 , … , q N ) {\displaystyle {\mathcal {V}}={\mathcal {V}}(q_{1},\ q_{2},\ \dots ,\ q_{N})\,\!} ,則此系統是保守系統。廣義力與廣義位勢的關係是 F i = − ∂ V ∂ q i {\displaystyle {\mathcal {F}}_{i}=-{\frac {\partial {\mathcal {V}}}{\partial q_{i}}}\,\!} 。 拉格朗日力學 哈密頓力學 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.