用數學來表述,波動方程式為
- ;
其中, 是描述波動的函數, 是拉普拉斯算符, 是波動傳播的速度, 是位置, 是時間。
描述平面波的函數 是波動方程式的一種解答:
- 。
平面波 的形式為:
- ;
其中, 是虛數單位, 是波向量, 是角頻率, 是複值的振幅純量。
取複函數的實部,則可以得到其物理意義。
- 。
注意到在任意時刻 ,波相位不變的曲面滿足方程式
- ,
或者,
- ;
其中, 、 是任意常數。
所有滿足這方程式的 形成一個與 相互垂直的平面,平行波的波前就是這種平面,所有的波前都與 相互垂直,都相互平行。
對於向量的波動方程式,像描述在彈性固體內的機械波或電磁波的波動方程式:
- ,
- ;
其中, 是電場, 是磁場;
解答也很類似:
- ;
其中, 是複值的振幅向量。
橫波的振幅向量垂直於波向量,像傳播於均向性介質的電磁波。縱波的振幅向量平行於波向量,像傳播於氣體或液體的聲波。
傳播於某介質內,角頻率與波向量之間的關係,可以以函數 表達,稱為介質的色散關係。對於這介質,波的相速度是
- ,
群速度是
- 。