Loading AI tools
来自维基百科,自由的百科全书
尖點(英語:Cusp)是曲線中的一種奇點。曲線上的動點在移到尖點時會開始反向移動,右圖是一個典型的例子。 給定一個以解析參數式定義的平面曲線:
此條目沒有列出任何參考或來源。 (2013年10月15日) |
尖點即為函數f及g之導數為零之點,同時方向導數在切線方向會變號(切線方向之斜率為)。尖點是局部的奇點,只牽涉到參數t的一個值,不像自交點牽涉到t的許多值。在某些時候,方向導數變號的條件會省去,此時奇點有可能看起來像一般的點。
將F以泰勒級數展開,當其最低階項可表為一次多項式的次方時,即為尖點所在處。但是並非所有擁有此性質的奇點都是尖點,由皮瑟級數相關定理可知,若F是解析函數,則在座標線性變換後,在尖點附近可將曲線參數化成以下形式:
其中a是實數,m是正偶數,S(t)是k階的冪級數且k>m。m也是F最低階項中非零部份的階數。這些定義已被勒內·托姆及弗拉基米爾·阿諾爾德推廣至以可微函數定義的曲線,若某點鄰域存在微分同胚,將曲線映至以上定義的尖點,則該曲線有尖點。在某些時候,以及以下文章,尖點被限定為二階尖點,也就是說{{{1}}}。一個平面曲線的二階尖點可被微分同胚表為x2 – y2k+1 = 0,其中k是正整數。
這是一篇關於幾何學的小作品。您可以透過編輯或修訂擴充其內容。 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.