Loading AI tools
来自维基百科,自由的百科全书
多貝西小波(英語:Daubechies Wavelet),是以比利時女性物理暨數學家英格麗·多貝西(Ingrid Daubechies)的名字命名之一種小波函數,當初英格麗·多貝西發現了一種具有階層(hierarchy)性質的小波,便將此小波以她的名字命名。多貝西小波主要應用在離散型的小波轉換,是最常使用到的小波轉換,通常使用在數位信號分析、信號壓縮跟雜訊去除。
一般而言的離散小波轉換通常是以正交小波(orthogonal wavelet)為基底,而多貝西小波也是一種正交小波。由於它很容易經由快速小波轉換(fast wavelet transform(FWT))實現,所以常會放在數位信號處理的教科書中教學。
對於有限長度的小波,應用於快速小波轉換(fast wavelet transform(FWT))時,會有兩個實數組成的數列:一是作為高通濾波器的系數,稱作小波濾波器(wavelet filter,也稱為mother wavelet);二是低通濾波器的系數,稱作調整濾波器(scaling filter,也稱為father wavelet)。
我們則以濾波器的長度N來形容濾波器為DN,例如:N=2的多貝西小波寫作D2、N=4的多貝西小波寫作D4,以此類推(N為偶數)。實際上常用的多貝西小波為D2到D20。與之對應的另一種描述方式是db N,其中N指消失矩的數量,由此,D4和db2是同一種多貝西小波。
尺度函數(藍色)和小波函數(紅色) | |||
對應函數的頻譜幅度 |
Scaling Coefficient |
db1(Haar) | db2 | db3 | db4 | db5 | db6 | db7 | db8 | db9 | db10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.6830127 | 0.47046721 | 0.32580343 | 0.22641898 | 0.15774243 | 0.11009943 | 0.07695562 | 0.05385035 | 0.03771716 | |
1 | 1.1830127 | 1.14111692 | 1.01094572 | 0.85394354 | 0.69950381 | 0.56079128 | 0.44246725 | 0.34483430 | 0.26612218 | |
0.3169873 | 0.650365 | 0.8922014 | 1.02432694 | 1.06226376 | 1.03114849 | 0.95548615 | 0.85534906 | 0.74557507 | ||
-0.1830127 | -0.19093442 | -0.03957503 | 0.19576696 | 0.44583132 | 0.66437248 | 0.82781653 | 0.92954571 | 0.97362811 | ||
-0.12083221 | -0.26450717 | -0.34265671 | -0.31998660 | -0.20351382 | -0.02238574 | 0.18836955 | 0.39763774 | |||
0.0498175 | 0.0436163 | -0.04560113 | -0.18351806 | -0.31683501 | -0.40165863 | -0.41475176 | -0.35333620 | |||
0.0465036 | 0.10970265 | 0.13788809 | 0.1008467 | 6.68194092e-4 | -0.13695355 | -0.27710988 | ||||
-0.01498699 | -0.00882680 | 0.03892321 | 0.11400345 | 0.18207636 | 0.21006834 | 0.18012745 | ||||
-0.01779187 | -0.04466375 | -0.05378245 | -0.02456390 | 0.043452675 | 0.13160299 | |||||
4.71742793e-3 | 7.83251152e-4 | -0.02343994 | -0.06235021 | -0.09564726 | -0.10096657 | |||||
6.75606236e-3 | 0.01774979 | 0.01977216 | 3.54892813e-4 | -0.04165925 | ||||||
-1.52353381e-3 | 6.07514995e-4 | 0.01236884 | 0.03162417 | 0.04696981 | ||||||
-2.54790472e-3 | -6.88771926e-3 | -6.67962023e-3 | 5.10043697e-3 | |||||||
5.00226853e-4 | -5.54004549e-4 | -6.05496058e-3 | -0.01517900 | |||||||
9.55229711e-4 | 2.61296728e-3 | 1.97332536e-3 | ||||||||
-1.66137261e-4 | 3.25814671e-4 | 2.81768659e-3 | ||||||||
-3.56329759e-4 | -9.69947840e-4 | |||||||||
-5.5645514e-5 | -1.64709006e-4 | |||||||||
1.32354367e-4 | ||||||||||
-1.875841e-5 |
Coiflet filter |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0.4829629131445 | 0.836516303 | 0.22414386 | -0.129409522 | |||||||
-0.129409522551 | -0.22414386 | 0.83651630 | -0.482962913 | |||||||
0.3326705529500 | 0.80689150 | 0.45987750 | -0.135011020 | -0.08544127 | 0.03522629 | |||||
0.0352262918857 | 0.08544127 | -0.13501102 | -0.459877502 | 0.806891509 | -0.33267055 | |||||
0.2303778133088 | 0.71484657 | 0.63088076 | -0.027983769 | -0.187034811 | 0.030841381 | 0.032883011 | -0.0105974017 | |||
-0.0105974017850 | -0.03288301 | 0.03084138 | 0.1870348117 | -0.027983769 | -0.630880767 | 0.714846570 | -0.2303778133 | |||
0.1601023979741 | 0.60382926 | 0.72430852 | 0.1384281459 | -0.242294887 | -0.032244869 | 0.077571493 | -0.0062414902 | -0.012580751 | 0.003335725 | |
0.0033357252854 | 0.012580751 | -0.0062414 | -0.077571493 | -0.032244869 | 0.2422948870 | 0.138428145 | -0.7243085284 | 0.6038292697 | -0.16010239 |
這邊列出4到10點的filter,這些在實務上已經很夠用,消失點(vanish moment)也就是k/2。
g會是低頻的濾波器,h會是高頻的濾波器。
可以看出,這邊採用python的語法,h會是g的反序,且n為基數時要乘上-1。
多貝西小波具有調整函式(低通濾波)及小波函式(高通濾波)兩個函式。因此,我們需先建立調整函式及小波函式的系數:
以下為示範小波轉換應用於影像壓縮,壓縮後為原本圖片的四分之一。
假設輸入的圖片大小為M*N,讓圖片對高頻和低頻進行卷積運算。
對M的基數進行取樣,這個結果會讓兩個維度都變成(M/2)*N。
把低頻的圖片放在上面,高頻的放在下面,低頻的圖片會長的像原本的圖片,高頻的圖片會是只有灰色的圖片。
對新的圖片再進行高頻和低頻的卷積,這時變成M*(N/2)的大小,低頻放在左邊,高頻放在右邊,
最後可以看到[0:M/2, 0:N/2]就會是原本壓縮過後的圖片。
因小波轉換有良好的性質,經過多次壓縮還是能保有原本的資訊。也就是說可以修改以下的程式碼改成迴圈的方式,
進行多次小波轉換,經過類似的模式再使用多次的反小波轉換,還原出原本大小的圖片。
import numpy as np
def subsampling(x, d):
if d == 1:
y = x[::2, :]
elif d == 2:
y = x[:, ::2]
return y
def upsampling(x, d):
s = x.shape
if d == 1:
y = np.zeros((p * s[0], s[1]))
y[::2, :] = x
elif d == 2:
y = np.zeros((s[0], p * s[1]))
y[:, ::2] = x
return y
def cconv(x, h, d):
if d == 2:
return np.transpose(cconv(np.transpose(x), h, 1))
y = np.zeros(x.shape)
p = len(h)
pc = int(round( float((p - 1) / 2 )))
for i in range(0, p):
y = y + h[i] * np.roll(x, i - pc, axis=0)
return y
def DWT(image, h, g): # discrete wavelet transformation
fW = image.copy()
j = int(np.log2(image.shape[0])-1)
A = fW[:2**(j+1):,:2**(j+1):]
Coarse = subsampling(cconv(A,h,1),1)
Detail = subsampling(cconv(A,g,1),1)
A = np.concatenate( (Coarse, Detail), axis=0 )
Coarse = subsampling(cconv(A,h,2),2)
Detail = subsampling(cconv(A,g,2),2)
A = np.concatenate( (Coarse, Detail), axis=1 )
fW[:2**(j+1):,:2**(j+1):] = A
return fW
def iDWT(image, fW, h, g): #image is original, fW is after DWT of that.
f1 = fW.copy()
j = int(np.log2(image.shape[0])-1)
A = f1[:2**(j+1):,:2**(j+1):]
Coarse = A[:2**j:,:]
Detail = A[2**j:2**(j+1):,:]
h1 = h[::-1]
g1 = g[::-1]
Coarse = cconv(upsampling(Coarse,1),h1,1)
Detail = cconv(upsampling(Detail,1),g1,1)
A = Coarse + Detail
Coarse = A[:,:2**j:]
Detail = A[:,2**j:2**(j+1):]
Coarse = cconv(upsampling(Coarse,2),h1,2)
Detail = cconv(upsampling(Detail,2),g1,2)
A = Coarse + Detail
f1[:2**(j+1):,:2**(j+1):] = A
return f1
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.