Loading AI tools
統計方法 来自维基百科,自由的百科全书
多線性主成分分析方法[1](英語:Multilinear Principal Component Analysis,MPCA),可將高維度空間映射到低維空間中去,降維的過程就是捨棄不重要的特徵向量縮減維度,相較於一般的主成分分析,多線性主成分分析保留了資料的結構性且有較佳的解釋比例。 多線性主成分分析(MPCA)是主成分分析(PCA)到多維的一個延伸。PCA是投影向量(Vector)到向量,而MPCA是投影張量(Tensor)到張量,投影的結構相對簡單,另外運算在較低維度的空間進行,因此處理高維度數據時有低運算量的優勢。舉例來說,給一個100x100的圖片,主成分分析運做在1000x1的向量上,而多線性主成分分析則是在二階模式上運作100x1的向量。對於等量的降維來說,主成分分析需要估算的變量量為多線性主成分分析的49((10000/(100x2)-1))倍,因此在實用面上多線性主成分分析可以比主成分分析更有效率。
多線性主成分分析(MPCA)定義一個多重子空間,此子空間擷取了大部分正交多維的輸入變異量,藉此達到特徵提取的效果。如同主成分分析,多線性主成分分析可運用在已中央化的資料上。多線性主成分分析的計算遵照交替最小次方(Alternating Least Square,ALS[2])方法。因此會有迭代動作,並且以分解原本的空間至一系列的多為映射子空間。每一個子空間都是一個經典的主成分空間,很容易被解析。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.