包絡定理(Envelop Theorem)是帶參數的最佳化問題中的一個定理。這個定理的內容是,參數的值變動時,目標函數的變動只和參數的變動有關,而與自變量(因參數變動而引起)的變動無關。包絡定理在最佳化領域非常有用。 此條目需要擴充。 (2018年11月11日) 具體表述 無約束的情形 設 f ( x , α ) {\displaystyle f(\mathbf {x} ,{\boldsymbol {\alpha }})} 是 R n + l {\displaystyle \mathbb {R} ^{n+l}} 上的可微實函數,其中 x ∈ R n {\displaystyle \mathbf {x} \in \mathbb {R} ^{n}} 是自變量, α ∈ R l {\displaystyle {\boldsymbol {\alpha }}\in \mathbb {R} ^{l}} 是參數,目標是選擇適當的 x {\displaystyle \mathbf {x} } 以最大化/最小化 f {\displaystyle f} 。設 V ( α ) = f ( x ∗ , α ) {\displaystyle V({\boldsymbol {\alpha }})=f(\mathbf {x} ^{*},{\boldsymbol {\alpha }})} ,其中 x ∗ {\displaystyle \mathbf {x} ^{*}} 為 f {\displaystyle f} 取最大值/最小值時的 x {\displaystyle \mathbf {x} } ,則包絡定理即 d V d α = ∂ f ∂ α | x = x ∗ {\displaystyle {\frac {\mathrm {d} V}{\mathrm {d} {\boldsymbol {\alpha }}}}=\left.{\frac {\partial f}{\partial {\boldsymbol {\alpha }}}}\right\vert _{\mathbf {x} =\mathbf {x} ^{*}}} 。[1][2] 證明 根據全微分公式有 d V = d f | x = x ∗ = ( ∑ i = 1 n ∂ f ∂ x i d x i + ∑ i = 1 l ∂ f ∂ α i d α i ) | x = x ∗ {\displaystyle \mathrm {d} V=\left.\mathrm {d} f\right\vert _{\mathbf {x} =\mathbf {x} ^{*}}=\left.\left(\sum _{i=1}^{n}{\frac {\partial f}{\partial x_{i}}}\mathrm {d} x_{i}+\sum _{i=1}^{l}{\frac {\partial f}{\partial \alpha _{i}}}\mathrm {d} \alpha _{i}\right)\right\vert _{\mathbf {x} =\mathbf {x} ^{*}}} 。 因為 x {\displaystyle \mathbf {x} } 取最值時必有 f {\displaystyle f} 對 x i {\displaystyle x_{i}} 的一階偏導數為零,即 ∂ f ∂ x | x = x ∗ = 0 {\displaystyle \left.{\frac {\partial f}{\partial \mathbf {x} }}\right\vert _{\mathbf {x} =\mathbf {x} ^{*}}=0} , 故可得到 d V = ∑ i = 1 n ∂ f ∂ α i d α i | x = x ∗ {\displaystyle \mathrm {d} V=\left.\sum _{i=1}^{n}{\frac {\partial f}{\partial \alpha _{i}}}\mathrm {d} \alpha _{i}\right\vert _{\mathbf {x} =\mathbf {x} ^{*}}} , 也即 d V d α = ∂ f ∂ α | x = x ∗ {\displaystyle {\frac {\mathrm {d} V}{\mathrm {d} {\boldsymbol {\alpha }}}}=\left.{\frac {\partial f}{\partial {\boldsymbol {\alpha }}}}\right\vert _{\mathbf {x} =\mathbf {x} ^{*}}} 成立。 有約束的情形 在無約束的情形下加上 m {\displaystyle m} 個同樣可微的實約束函數 g j ( x , α ) = 0 {\displaystyle g_{j}(\mathbf {x} ,{\boldsymbol {\alpha }})=0} ,則包絡定理變為 d V d α = ∂ L ∂ α | x = x ∗ {\displaystyle {\frac {\mathrm {d} V}{\mathrm {d} {\boldsymbol {\alpha }}}}=\left.{\frac {\partial {\mathcal {L}}}{\partial {\boldsymbol {\alpha }}}}\right\vert _{\mathbf {x} =\mathbf {x} ^{*}}} , 其中 L ( x , λ , α ) = f ( x , α ) + ∑ j = 1 m λ j ( α ) g j ( x , α ) {\displaystyle {\mathcal {L}}(\mathbf {x} ,{\boldsymbol {\lambda }},{\boldsymbol {\alpha }})=f(\mathbf {x} ,{\boldsymbol {\alpha }})+\sum _{j=1}^{m}\lambda _{j}({\boldsymbol {\alpha }})g_{j}(\mathbf {x} ,{\boldsymbol {\alpha }})} 是拉格朗日函數。 證明過程與無約束時類似,只是 x {\displaystyle \mathbf {x} } 取最值時 ∂ f ∂ x i = 0 {\displaystyle {\frac {\partial f}{\partial x_{i}}}=0} 變為 ∂ L ∂ x i = 0 {\displaystyle {\frac {\partial {\mathcal {L}}}{\partial x_{i}}}=0} 。 參考文獻 [1]Afriat, S. N. Theory of Maxima and the Method of Lagrange. SIAM Journal on Applied Mathematics. 1971, 20 (3): 343–357. doi:10.1137/0120037. [2]Takayama, Akira. Mathematical Economics Second. New York: Cambridge University Press. 1985: 137–138 [2018-11-10]. ISBN 0-521-31498-4. (原始內容存檔於2017-02-22). 參見 霍特林引理 謝潑德引理 羅伊恆等式Wikiwand - on Seamless Wikipedia browsing. On steroids.