在數論中,佩服數(英文:Admirable numbers),是指若一個正整數除了本身外之所有的因數[註 1],存在一個因數,將其他不是本身、不是的因數相加後,再減掉,若等於本身,就稱它為「佩服數」。換句話說佩服數是計算一數的因數和,但其中一個因數是以相反數和其他因數相加,得到的值是自己本身的數。有這種性質的數雖未如完全數一般的完美,但仍被形容為「令人敬佩的」[1]。
定義
一個正整數除了本身外之所有因數,存在一個因數,將其他不是本身、不是的因數相加後,再減掉,若等於本身,就稱它為是佩服數。
例如12的因數有1、2、3、4、6、12。其中存在一個因數2,使得[2],同時,12也是最小的佩服數[1]。
更為嚴格地說,佩服數是指使得公式成立的正整數,其中σ指的是因數和函數,即的所有正因數(包括其本身n)之和。是n的其中一個因數。
例子
最小的一些佩服數是:
- 12、 20、 24、 30、 40、 42、 54、 56、 66、 70、 78、 84、 88、 102、 104、 114、 120、 138、 140、 174、 186、 222、 224、 234、 246、 258、 270、 282、 308、 318、 354 ……(OEIS數列A111592)
以上列出的佩服數都是偶數。最小的奇佩服數是945[4],同時最小的奇過剩數、奇半完全數[5]也是945。
前幾個奇佩服數是:
- 945、4095、6435、7425、8415、8925、9555、26145、28035、30555、31815、32445、43065、46035、78975、80535、81081、103455、129195 ……(OEIS數列A109729)
連續的佩服數[註 3]比連續的過剩數還要少。在1012以下,只有兩組連續佩服數,分別是(29691198404, 29691198405)和(478012798575, 478012798576)[1]。
佩服數的分佈並不像過剩數那樣,過剩數有着非零的自然密度[6],而佩服數的成長率非線性的,例如小於100的佩服數有13個、小於1,000的佩服數有65個、小於10,000的佩服數有379個(OEIS數列A109727),其密度隨着數字尺度變大而逐漸減少。
所有大於3的質數的六倍都是佩服數[1][註 2],更精確地說,所有的質數與質因數不含該質數之完全數的乘積都是佩服數[註 4]。
相關的數列
有一種與佩服數類似但不太一樣的定義:一個正整數除了本身外之所有因數中,存在一個因數,將其他不是本身的因數相加後,再減掉,等於本身。有這些性質的前幾個數有:
例如18的因數有1、2、3、6、9、18有一個因數3,使得。
有這種性質的數最小的奇數是173369889[7],同時也是最小的奇擬完全數(OEIS數列A181595)[8],但不是佩服數。
特別的,這些數字正好與盈完全數(Abundant-perfect numbers)重疊,盈完全數的定義為:自己的因數和(不包含自己)減去自己得到的數可以整除自己。
薩克斯參考了親和數的定義,定義了一個新的數叫做相容數(compatible numbers),其定義為有一對數字N和M,分別各存在一個因數dN和dM,N將其他不是本身、不是dN的因數相加後,再減掉dN,得到M、而M將其他不是本身、不是dM的因數相加後,再減掉dM,得到N。
例如30和40[9]:
- 30:2 + 3 + 5 + 6 + 10 + 15 - 1 = 40
- 40:1 + 2 + 4 + 5 + 8 + 20 - 10 = 30
前幾對相容數是:
有一種與佩服數類似但相反的定義:若一個正整數除了本身外之所有因數,存在一個因數d',將其他不是本身的因數相加後,再加上d',等於本身。有這些性質的前幾個數有:
- 2、4、8、10、16、32、44、64、128、136、152、184、256、512、752、……[註 6]
特別的,這些數字正好與虧完全數(Deficient-perfect numbers)重疊,虧完全數的定義為:自己減去自己的因數和(不包含自己)得到的數可以整除自己[10][11],在這個定義中1也符合,因為1不含自己的因數和是0,1減去零是1,當然可以整除1。
最小的幾個虧完全數是:
楚姆克勒數(Zumkeller numbers)是指因數可以分為相同總和的兩組數字。例如48的因數可以分為兩組:{1, 3, 4, 6, 8, 16, 24}和{2, 12, 48},其中1 + 3 + 4 + 6 + 8 + 16 + 24 = 2 + 12 + 48,因此48是一個楚姆克勒數[13]。
所有佩服數都是楚姆克勒數,因為佩服數中的相減因數(即其他因數和減去此因數會等於本身的那個因數)以外的因數存在一個因數,其與佩服數中的相減因數相加後會等於其他因數之和。
前幾個楚姆克勒數是:
參見
註釋
參考文獻
外部連結
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.