在紐結理論中,亞歷山大多項式(Alexander polynomial)是一種紐結多項式。[1] 亞歷山大–康威多項式 ∇ ( O ) = 1 {\displaystyle \nabla (O)=1} (unknot) ∇ ( L + ) − ∇ ( L − ) = z ∇ ( L 0 ) {\displaystyle \nabla (L_{+})-\nabla (L_{-})=z\nabla (L_{0})} Δ L ( t 2 ) = ∇ L ( t − t − 1 ) {\displaystyle \Delta _{L}(t^{2})=\nabla _{L}(t-t^{-1})} Δ ( L + ) − Δ ( L − ) = ( t 1 / 2 − t − 1 / 2 ) Δ ( L 0 ) {\displaystyle \Delta (L_{+})-\Delta (L_{-})=(t^{1/2}-t^{-1/2})\Delta (L_{0})} 參考文獻Loading content...閱讀Loading content...外部連結Loading content...Wikiwand - on Seamless Wikipedia browsing. On steroids.