3D投影是將3D空間中的點映射到2D平面上的方法。由於目前絕大多數圖形數據的顯示方式仍是2D的,因此3D投影的應用相當廣泛,尤其是在計算機圖形學,工程學和工程製圖中。
- 3D圖形平面投影
- 平行投影:投影中心與投影平面的距離是無限的,投影線相互平行
- 正投影(正交投影):投影線垂直於投影平面
- 多視圖投影:物體的坐標面與投影面平行,正視圖、側視圖、俯視圖
- 軸測投影:物體的三個坐標面或坐標軸與投影面均不平行
- 正等軸測投影(正等測):投影時三個坐標軸等比例縮放,投影面坐標軸夾角120°
- 正二軸測投影(正二測):投影時兩個坐標軸等比例縮放,第三個坐標軸縮放比例不同
- 正三軸測投影(正三測):投影時三個坐標軸縮放比例均不相等
- 斜投影:投影線不垂直於投影平面
- 斜等軸測投影(斜等測)
- 斜二軸測投影(斜二測)
- 斜三軸測投影(斜三測)
- 透視投影:投影中心與投影平面的距離是有限的
平行投影是投影線相互平行的投影。若投影線垂直於投影面則稱正投影,若投影面傾斜於投影面則稱斜投影。
斜投影不像正交投影一樣投影線垂直於投影面,而是投影線與投影面成非90度的斜角。
透視投影的定義更為複雜。可以將其理解為透過攝像機取景器對於被投影物體進行觀察。攝像機的位置、朝向和視野都將影響投影變換的結果。我們定義以下變量來對這一變換進行描述:
- :將被投影的3D空間中的點。
- :攝像機的位置。
- :攝像機的旋轉角度。當 =<0,0,0>且 =<0,0,0>, 3D向量<1,2,0>將被投影到2D向量<1,2>。
- :觀測者相對顯示平面的位置。[1]
最終結果為:
- :所產生的2D投影。
首先我們定義點作為點向攝像機坐標系所作的變換,其中攝像機坐標系由攝像機的位置和旋轉所決定。該過程為:先用減去,然後使用由產生的旋轉矩陣乘上該結果。該變換通常稱為攝像機變換(注意該計算過程假設使用左手法則):
[2]
[3]
- [4]
或者使用以下這種非矩陣表示的形式,其中角度的正負號與矩陣表示形式不同:
然後將變換後的該點通過以下方程投影到2D平面(此處投影平面為x/y平面,有時也使用x/z):[5]
或在齊次坐標系下可以表示為:
和
觀測者到顯示平面的距離,,直接關係到視野的大小。為可視角度。(這裏假設屏幕的兩角為(-1,-1)和(1,1))
如果要在一些特定的顯示設備上顯示該2D平面,之後還要進行一些必要的剪裁和縮放操作。
計算3D空間中位於Ax,Az的點在屏幕坐標x軸的位置:
對於y軸同樣有:
(其中Ax和Ay是透視轉換前物體在空間中的坐標)
Sonka, M; Hlavac, V; Boyle, R, Image Processing, Analysis & Machine Vision 2nd Edn., Chapman and Hall: 14, 1995, ISBN 0412455706