Loading AI tools
来自维基百科,自由的百科全书
王革(1957年1月20日—),醫學成像學家,美國醫學與生物工程院(AIMBE)會士[1]、電氣與電子工程師學會(IEEE)會士[2]、國際光學工程學會(SPIE)會士[3]、美國光學學會(OSA)會士、美國醫學物理協會(AAPM)會士[4]、美國科學促進會(AAAS)會士[5]、美國國家發明家科學院(NAI)院士[6]。研究領域包括計算機斷層成像(Computed Tomography,CT)、多模態成像和人工智能(側重於深度學習)。目前是美國倫斯勒理工學院生物醫學工程系的Clark & Crossan講席教授,也是該校生物醫學成像中心主任[7]。
此條目的主要貢獻者與本條目所述的內容疑似存在利益衝突。 (2023年10月2日) |
此條目疑似為廣告或包含宣傳性內容。 (2022年6月13日) |
王革1982年畢業於西安電子科技大學電子工程系,1985年在中國科學院研究生院遙感應用研究所獲得碩士學位,隨後於1991年和1992年在紐約州立大學布法羅分校獲得電氣和計算機工程的碩士和博士學位。畢業後,王革於1994年加入聖路易斯華盛頓大學馬林克羅特放射研究所擔任講師進行研究工作,1996年離開聖路易斯華盛頓大學後,於次年加入愛荷華大學放射學系,並在愛荷華大學進行了長達10年的研究工作。在2006年,王革加入弗吉尼亞理工大學——威克森林大學生物醫學工程科學學院|Virginia Tech - Wake Forest University School of Biomedical Engineering & Sciences}}擔任教授,併兼任生物醫學成像部主任[8]。
2008年10月,王革受西安電子科技大學邀請作為傑出校友回到母校訪問,並被授予西安電子科技大學名譽教授[9][10]。
2013年,王革加入倫斯勒理工學院,作為生物醫學工程系的Clark & Crossan講席教授和生物醫學成像中心主任從事研究工作至今。
王革在1991年率先提出了螺旋錐束CT方法[11]。他在螺旋錐束CT方面的工作解決了「長物體問題」(縱向數據截斷問題),對CT領域產生了影響[12]。比利時布魯塞爾自由大學核醫學系醫學成像專家Defrise等人[13]提到:「為了解決長物體問題,可以沿實際測量射線方向,對3D 數據進行反投影,以改進2D濾波反投影算法從而實現螺旋錐束CT重建。這種方法的原型是Wang等人提出的。」美國芝加哥大學放射學系教授La Riviere和Csuptwo有限責任公司的醫學成像專家Crawford[14]寫到:「大多數商業系統使用的近似算法都是基於把Feldkamp-Davis-Kress(FDK)算法擴展到螺旋錐束掃描軌跡,該擴展最初由Wang等人推導出來。」由於這項貢獻,他於2019年入選美國國家發明家科學院(NAI)。王革及其合作者發表了系列相關文章,解決了一般軌跡錐束CT的精確重建和三源螺旋錐束CT的准精確重建等問題。目前,每年約有2億次醫學CT掃描,其中大部分都是採用這種掃描模式。
2016年,王革提出了第一個深度成像技術路線圖[15]。自此,他與他的合作者在這個全新領域發表了一系列論文,主要成果涵蓋深度去噪、深度重建和深度放射組學。2018年舉辦的林道諾貝爾獎得主大會對他在深度去噪方面的工作進行了報導[16]。2019年,他與合著者出版了第一本關於基於機器學習的圖像重建專業著作(IOP最流行的電子圖書之一,2020年有超過33,000的下載量)[17],並為IEEE Transactions on Medical Imaging主辦了兩期關於該主題的特刊。他的團隊與通用電氣、FDA、哈佛大學及其他研究機構合作,積極開發應用於臨床和臨床前的深度成像算法和系統。
王革及其合作者建立了用於解決「內問題」(橫向數據截斷)的內成像(interior tomography)方法以及泛成像(omni-tomography,應用於斷層掃描多模態的時空融合,例如同步CT-MRI)方法[18]。此外,他的團隊開發了用於光學分子成像的生物熒光斷層成像術(bioluminescence tomography)[19]和用於瞬時精細結構成像的多能X光散射譜成像術(spectrography)。此外,他在公理化文獻計量學(axiomatic bibliometrics)也有研究。此外,他還開發了第一門深度醫學成像的本科和研究生課程[20]和遠程在線考試防作弊技術[21]。
王革在PNAS、Nature、Nature Machine Intelligence、Nature Communications等著名學術期刊發表了超過550篇同行評議論文,以及許多刊載在會議和arXiv上的論文,目前擁有超過100項已批准和已發布的專利。在他的整個職業生涯中,受到NIH、NSF和工業界的連續資助,其中作為PI/Contact PI/MPI的資助超過4000萬美元,作為Co-PI/Co-I/Mentor的資助超過3000萬美元。他在多個國際大會進行了主題或特邀演講,包括2021 SPIE O+P大會[22]作關於X光成像與深度學習融合的報告以及關於CT的中英文科普報告。他的TEDEd課程「X射線如何透視你」被觀看了超過150萬次[23]。
王革因為其在醫學成像領域及相關領域的傑出貢獻,獲得了多項專業會士的榮譽:
王革獲得諸多研究和教學獎項,部分如下:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.