布洛赫球面=\cos \theta \,e^{i\delta }\,|0\rangle +\sin \theta \,e^{i(\delta +\phi )}\,|1\rangle =e^{i\delta }(\cos \theta \,|0\rangle +\sin \theta \,e^{i\phi }\,|1\rangle
算数阶层{\displaystyle \phi (x):=\forall n\,\theta (n,x)} ,其中 θ {\displaystyle \theta } 为 Δ 0 {\displaystyle \Delta _{0}} 。 更进一步定义 ϕ ( x ) {\displaystyle \phi (x)} 为 Σ
偶極子}Y_{\ell 'm'}^{*}(\theta ,\phi )Y_{\ell m}(\theta ,\phi )\sin \theta \ \mathrm {d} \theta \mathrm {d} \phi =\delta _{\ell \ell '}\delta _{mm'}} , 可以得到 ⟨
柯盖德大学(Beta Theta Pi(英语:Beta Theta Pi), Delta Upsilon(英语:Delta Upsilon), Theta Chi(英语:Theta Chi), Phi Delta Theta(英语:Phi Delta Theta), 和Phi Kappa Tau(英语:Phi Kappa
图科斯基方程t\partial \phi }}+\left[{\frac {a^{2}}{\Delta }}-{\frac {1}{\sin ^{2}\theta }}\right]{\frac {\partial ^{2}\psi }{\partial \phi ^{2}}}-\Delta ^{-s}{\frac