科列斯基分解線性代數中,科列斯基分解(英語:Cholesky decomposition 或 Cholesky factorization)是指將一個正定的埃爾米特矩陣分解成一個下三角矩陣與其共軛轉置之乘積。這種分解方式在提高代數運算效率、蒙特卡羅方法等場合中十分有用。實數矩陣的科列斯基分解由安德烈-路易·科
稀疏矩阵元素。为减少内存要求和算术操作的次数,我们经常通过交换某些行或某些列来尽量减少注入元。符号柯列斯基分解(英语:Symbolic Cholesky decomposition)可以用来在做实际的柯列斯基分解之前计算最坏情况下注入元的数目。与此类似,可以用符号QR分解在做实际的QR分解之前计算最坏情况下注入元的数目。
LU分解= L L ∗ {\displaystyle A=LL^{*}\ } 这个分解被称作Cholesky分解。对每一个正定矩阵,Cholesky分解都唯一存在。此外,比起一般的LU分解,计算Cholesky分解更为快捷,并具有更高的数值稳定性。 由于LDU分解唯一存在,对给定的矩阵,可以给出相应
数值分析,再利用矩陣分解的方式求解,這些方法包括高斯消去法、LU分解,對於對稱矩陣(或埃爾米特矩陣)及正定矩陣可以用喬萊斯基分解(英语:Cholesky decomposition),非方陣的矩陣則可以用QR分解。迭代法包括有雅可比法、高斯–塞德迭代法、逐次超松驰法(英语:successive
QR分解is not. R1 is then equal to the upper triangular factor of the Cholesky decomposition of A* A (= ATA if A is real). 类似的,我们可以定义A的QL,RQ和LQ分解。其中L是下三角矩陣。