在數學中,霍普夫代數(英文: Hopf algebra)是一類雙代數,亦即具有相容的結合代數與餘代數結構的向量空間,配上一個對極映射,後者推廣了群上的逆元運算 。霍普夫代數以數學家海因茨·霍普夫命名,此類結構廣見於代數拓撲、群概形、群論、量子群等數學領域。
所謂霍普夫代數,是指一個域 上的雙代數 ,配上一個線性映射 (稱為對極映射),使得下述圖表交換:
利用 Sweedler 記號,此定義亦可表為
對極映射可理解為 對卷積之逆,故其若存在必唯一。當 ,則稱 為對合的;交換或餘交換霍普夫代數必對合。
根據定義,有限維霍普夫代數的對偶空間也帶有自然的霍普夫代數結構。
群代數. 設 為群,可賦予群代數 下述霍普夫代數結構:
有限群上的函數. 設 為有限群,置 為所有 的函數,並以逐點的加法與乘法使之成為結合代數。此時有自然的同構 。定義:
仿射代數概形的座標環:處理方式同上。
泛包絡代數. 假設 是域 上的李代數,置 為其泛包絡代數,定義:
後兩條規則與交換子相容,因此可唯一地延拓至整個 上。
上述所有例子若非交換便是餘交換的。另一方面,泛包絡代數的某些「變形」或「量子化」可給出非交換亦非餘交換的例子;這類霍普夫代數常被稱為量子群,儘管嚴格而言它們並不是群。這類代數在非交換幾何中相當重要:一個仿射代數群可以由其座標環構成的霍普夫代數刻劃,而這些霍普夫代數的變形則可設想為某類「量子化」了的代數群(實則非群)。