Remove ads
化合物 来自维基百科,自由的百科全书
釔鋇銅氧,或稱釔鋇銅氧化物、YBCO,是化學式為YBa2Cu3O7的化合物。它是著名的高溫超導體,屬於第二類超導體,並且是第一個製得轉變溫度在液氮沸點以上的材料。
在發現超導性後的第75年,在蘇黎世IBM工作的約翰內斯·貝德諾爾茨和卡爾·米勒發現特定的半導體氧化物可以在低於35K的溫度下顯示出超導性,特別是鑭鋇銅氧化物,一種缺氧鈣鈦礦型的潛在材料。
在此基礎上,1987年,阿拉巴馬大學亨茨維爾分校的吳茂昆及其研究生(Ashburn和Torng),與休斯頓大學的朱經武和他的學生共同發現了釔鋇銅氧,也因此引發了對新高溫超導材料的研究熱潮。
YBCO是首個超導溫度在77K以上的材料,也就是說它的轉變溫度高於液氮的沸點,用相對便宜的液氮就可以冷卻。之前發現的超導體都必須用液氦或液氫冷卻(Tb = 20.28 K)。
YBCO最早是通過在1000-1300K加熱金屬碳酸鹽混合物製備的。[2][3]
現在YBCO的製取以相應的硝酸鹽和氧化物為原料。[3]
YBa2Cu3O{7-x}的超導性質與x值(氧含量)很有關係,只有滿足0≤x≤0.5的材料在Tc溫度下有超導性,當x~0時其轉變溫度最高,為95K。[3]
除了氧的計量比外,YBCO的性質也由結晶方式決定。在燒結YBCO時必須小心,因為YBCO是晶體材料,只有小心控制退火和淬火的溫度和速度,校準晶界,才可以使其超導性達到最佳。
吳茂昆和同事提出了其他合成YBCO的方法,比如化學氣相沉積(CVD)[2][3]、溶膠-凝膠[4]以及氣溶膠法[5]。這些方法在燒結時仍然需要小心。
YBCO為鈣鈦礦缺陷型層狀結構,含有CuO-CuO2-CuO2-CuO交替的層,CuO2層可以有變形和皺褶。[2] 釔原子存在於CuO2和CuO2層中,BaO層則在CuO與CuO2兩層之間。
當YBa2Cu3O7中氧原子計量小於7時,根據具體數值的不同,這些非計量化合物結構可以有差異,可以化學式中的δ來表示。 = 1時為四方結構,CuO層(Cu(1))的O(1)為空,不顯示超導性。略微增加氧的含量會增加O(1)的占有率。δ< 0.65時b軸形成Cu-O鏈,結構變為正交,晶格參數分別為a=3.82、b=3.89及其c=11.68Å。當δ ~0.07時超導性最佳,O(1)中只有少數幾個為空。
有證據顯示,當其它原子取代Cu和Ba[來源請求]時,超導性發生在Cu(2)O層,Cu(1)O(1)鏈只用作儲存電荷(charge reservoirs)。然而鐠取代釔後形成化合物的超導性與此相矛盾。[6]
釔鋇銅氧的超導長度規表現出各向異性,穿透深度 , ,相干長度 , 。雖然a-b平面的相干長度是c軸的6倍之多,但與傳統的超導體,如鈮()相比仍顯得較小。這意味着其超導態易受到界面或晶胞缺陷的影響,因此對製作YBCO時的儀器要求增高,並且YBCO對潮濕環境相當敏感。
高溫超導體有很多實際中的應用,例如可用作核磁共振成像、磁懸浮設施以及約瑟夫森結中的磁體。
主要有兩個問題限制了YBCO在超導方面的應用:
另外,很多情況下大規模冷卻物體至液氮的溫度並不十分實際。
表面改性常會導致材料的新性質。表面改性的YBCO可衍生出許多性質,如抑制腐蝕、黏合聚合物、成核,製備有機超導體/絕緣體/高溫超導體以及製備金屬/絕緣體/超導體隧道結。[7]
這些分子層狀材料可用循環伏安法製備。目前已製得烷基胺、芳香胺和硫醇與YBCO形成的材料,它們穩定性不一。有理論認為在這其中胺扮演路易斯鹼,與YBa2Cu3O7中路易斯酸性的Cu位點結合生成穩定的配位鍵。
YBCO和其他超導體一樣,在轉變溫度會發生邁斯納效應。在該溫度或低於該溫度時,YBCO變為抗磁性,內部磁通量為零,磁力線無法進入超導體,超導體排斥體內的磁場。因此這時超導體表面的任何磁鐵都會懸浮起來,見下方的影片。[2]
|
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.