胡世楨 (英語:Sze-Tsen Hu, 1914年10月9日—1999年5月6日)[1]是一位美國華人數學家。
Remove ads
生平
1914年出生於浙江湖州,1938年獲得國立中央大學學士學位,1947年獲得曼徹斯特大學博士學位,師從馬克思·紐曼。[2]
1949年至1950年擔任杜蘭大學客座講師,1950年至1952年擔任普林斯頓高等研究院訪問學者。[3]1952年至1955年擔任杜蘭大學副教授,1955年至1956年擔任佐治亞大學教授,1956年至1959年擔任韋恩州立大學教授,1960年初至1982年擔任加州大學洛杉磯分校教授 。1966年被選為中央研究院第六屆院士。
1999年5月6日在美國逝世,享年85歲。
Remove ads
著作
Remove ads
- Extension and classification of the mappings of a finite complex into a topological group or an n-sphere. Annals of Mathematics. January 1949, 50 (1): 158–173. JSTOR 1969359. doi:10.2307/1969359.
- On generalising the notion of fibre spaces to include the fibre bundles. Proc. Amer. Math. Soc. 1950, 1: 756–762. MR 0038657. doi:10.1090/s0002-9939-1950-0038657-8.
- The equivalence of fiber bundles. Annals of Mathematics. 1951, 53: 256–275. JSTOR 1969542. doi:10.2307/1969542.
- On local structure of finite–dimensional groups. Trans. Amer. Math. Soc. 1952, 73: 383–400. MR 0053118. doi:10.1090/s0002-9947-1952-0053118-4.
- The homotopy addition theorem. Annals of Mathematics. July 1953, 58 (1): 108–122. JSTOR 1969822. doi:10.2307/1969822.
- Axiomatic approach to the homotopy groups. Bull. Amer. Math. Soc. 1956, 62: 490–504. MR 0080304. doi:10.1090/s0002-9904-1956-10038-4.
Remove ads
- Introduction to Homological Algebra. San Francisco: Holden Day. 1968.
- Homotopy theory. Academic Press. 1959.[4]
- Threshold Logic. University of California Press. 1965.
- Introduction to General Topology. San Francisco: Holden Day. 1966.
- Homology theory. San Francisco: Holden Day. 1966.
- Cohomology theory. Chicago: Markham. 1968.
- Mathematical Theory of Switching Circuits and Automata. University of California Press. 1968; 258 pages
- Differentiable Manifolds. New York: Holt, Rinehart and Winston. 1969.
Remove ads
參考來源
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.
Remove ads