考克斯特群
来自维基百科,自由的百科全书
来自维基百科,自由的百科全书
在數學中,考克斯特群是一類由空間中對超平面的鏡射生成的群。這類群廣泛出現於數學的各分支中,二面體群與正多胞體的對稱群都是例子;此外,根系對應到的外爾群也是考克斯特群。這類群以數學家哈羅德·斯科特·麥克唐納·考克斯特命名。
所謂考克斯特群,是一個群 寫成如下的表達式,即由滿足一些交互關係的生成元生成的群
其中 滿足 以及 對所有 。在此 意指 恆不等於單位元。
注意到 ;若 ,則 。且 m 滿足對稱性 。
令這組生成元為 。資料 稱為考克斯特群。方陣 稱為考克斯特矩陣。
設 為考克斯特群,可證明存在一個有限維實矢量空間 及其上的非退化雙線性形 (未必正定),使得 同構於正交群 的某個子群。由於 的元素均為二階,可視之為 中對某些超平面的鏡射。
利用 的展示,定義元素的長度如下:對 ,定義其長度 為所有表法 中最短的 。由此可導出
一般而言,兩個群展示的同構與否是無法判定的。然而對考克斯特群則有一個簡單的判準,稱為交換條件。可以透過考克斯特-丹金圖分類有限考克斯特群。圖的構造方式為:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.