Remove ads
来自维基百科,自由的百科全书
相圖是在用繪圖的方式在相平面上表示動態系統的軌跡。每一個不同的初始條件都用一條曲線(或是一個點)表示。
在研究動態系統時,相圖是很重要的工具。相圖是由在相空間中各點軌跡的點圖組成。相圖可以看出動態系統在給定的參數下,是否有吸引子、排斥子或是極限環。拓撲等價的概念在為系統行為分類時非常重要,例如二個不同的相圖可能會出現相同的本質性動態特性。
在相圖中會描繪系統的軌跡(以箭頭表示)、穩定穩態(以黑點表示)及不穩定穩態(以圓圈點表示),相圖的軸對應狀態變數。
相圖可以呈現微分方程(ODE)系統的行為,也可以看出系統的穩定性[1]
不穩定 | 隨著時間增加,系統大部份的解會逐漸趨近∞ |
漸近穩定 | 隨著時間增加,系統所有的解會逐漸趨近0 |
中性穩定 | 隨著時間增加,系統中沒有解會趨近∞,但大部份的解也沒有趨近0 |
ODE系統相圖上的特性也可以用系統的特徵值或跡(trace)以及行列式判別(跡 = λ1 + λ2,行列式 = λ1 x λ2)[1]
特徵值、跡、行列式 | 相圖形狀 |
---|---|
λ1 & λ2為實數,異號
行列式 < 0 |
鞍型(不穩定) |
λ1 & λ2為實數,同號,λ1 ≠ λ2;
0 < 行列式 < (trace2 / 4) |
節點(跡 < 0 表示穩定,跡 > 0 表示不穩定) |
λ1 & λ2均有實部有虛部
(trace2 / 4) < determinant |
螺旋(trace < 0 表示穩定,trace > 0 表示不穩定) |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.