Loading AI tools
全天第十亮星,为位于猎户座的红超巨星 来自维基百科,自由的百科全书
觀測資料 曆元 J2000.0 | |
---|---|
星座 | 獵戶座 |
星官 | 參宿 |
赤經 | 05h 55m 10.3053s[1] |
赤緯 | +07° 24′ 25.426″[1] |
視星等(V) | 0.42[1](0.3 to 1.2) |
特性 | |
光譜分類 | M2Iab(紅超巨星)[1] |
U−B 色指數 | 2.06[2] |
B−V 色指數 | 1.85(橙紅)[2] |
變星類型 | SR c (半規則)[1] |
天體測定 | |
徑向速度 (Rv) | +21.91[1] km/s |
自行 (μ) | 赤經:24.95 ± 0.08[3] mas/yr 赤緯:9.56 ± 0.15[3] mas/yr |
視差 (π) | 5.07 ± 1.10[3] mas |
距離 | 643 ± 146 [3] ly (197 ± 45 [3] pc) |
絕對星等 (MV) | −6.05[4] |
詳細資料 | |
質量 | ~18–19[5] M☉ |
半徑 | ~1180[6] R☉ |
表面重力 (log g) | -0.5[7] |
亮度 | ~140,000[8] L☉ |
溫度 | 3,500[7][9] K |
金屬量 | 0.05 Fe/H[10] |
自轉 | 5 km/s[9] |
年齡 | 10010000 年 |
其他命名 | |
參考資料庫 | |
SIMBAD | 資料 |
如果它位於我們太陽系的中心,它的表面將位於小行星帶之外,水星、金星、地球和火星軌道以內的一切都將被它吞噬。儘管如此,銀河系中還有幾顆更大的恆星,包括超巨星的造父四(仙王座μ)和奇特的特超巨星大犬座VY。由於各種原因,它的距離一直很難測量,目前的最佳估計值約為500-600光年。這對於相對較近的恆星來說,是一個相對較大的不確定性。因此,計算所得的參宿四質量範圍從略低於太陽的十倍到略高於太陽的二十倍不等。它的絕對星等約為-6。參宿四的年齡不到1,000萬年,由於其質量大而迅速演化,預計最有可能在10萬年內,將以超新星爆炸結束其演化。它被認為是從包含獵戶腰帶的誕生地,獵戶座OB1星協彈射出來的奔逃星。依據觀測,它正以的速度穿過 30 km/s星際介質,形成了一個超過4光年寬的弓形震波。
在1920年,參宿四成為第一顆量測到光球角大小的太陽系外恆星。隨後的研究報告了角直徑(即表觀尺寸)的範圍為0.042至0.056弧秒;該測定範圍歸因於非球形、周邊昏暗、恆星脈動以及不同波長下的不同外觀。它還被一個大約是恆星大小的250倍,複雜、不對稱的包絡包圍著;這是由恆星本身的質量流失造成的。從地球觀測到的參宿四角直徑僅次於劍魚座R和太陽的角直徑。
從2019年10月開始,參宿四明顯開始變暗,到2020年2月中旬,它的亮度從0.5星等下降到1.7星等,下降了約3倍。到 2020年2月22日,參宿四停止變暗,並且亮度開始回升;正如2022年2月25日報導的那樣,一直保持在更正常的亮度範圍內。紅外觀測發現,在過去的50年裡,亮度沒有顯著變化,這表明變暗是由於消光或大顆粒星周塵造成的變化,而不是恆星光度的潛在變化。使用哈伯太空望遠鏡在2020年進行的一項研究表明,遮蔽星光的塵埃是由表面物質拋射產生的。這種表面物質拋射將物質拋射到距離恆星數百萬公里的地方,然後冷卻形成導致恆星變暗的塵埃。
約翰·拜耳在1603年將這顆恆星命名為「獵戶座α」(拉丁化為Alpha Orionis )。
固有的名稱Betelgeuse源自阿拉伯يد الجوزاء Yad al-Jauzā’,意思就是"獵人的肩膀(al-Jauzā』 [i.e. Orion]")[11]。西元13世紀的一個錯誤,將阿拉伯語的"ya"讀作"ba",導致了歐洲的名字[12]。在英語,這個名字有四種常見的發音,這取決於第一個e是短音還是長音,以及"s" 是"s"還是"z"[13][14]:
最後一個的發音因為聽起來像"Beetlejuice"(甲蟲汁)而被普及。
在2016年,IAU組織了恆星名稱工作組(WGSN)[15]對恆星的專有名稱進行編目和標準化。WGSN在2016年7月的第一份公告[16],包括WGSN批准的前兩批名稱的表格,其中包括這顆恆星的名稱為Betelgeuse(參宿四);它現在被列入IAU星名目錄中[17]。
自古以來,參宿四及其紅色就已被注意到;古天文學家托勒密將其顏色描述為 ὑπόκιρρος("hypókirrhos"=或多或少的橙色茶色),這一術語後來在烏魯伯格的「Zij-i Sultani」翻譯為「rubdo」,在拉丁語的意思為「紅潤」[18][19]。在19世紀,現代的恆星光譜分類法創立之前,安吉洛·西奇以其自創的恆星分類法將參宿四作為第三類(橘色至紅色恆星)的原型[20]。相較之下,在托勒密之前的三個世紀,中國天文學家觀察到參宿四呈「黃色」; 如果準確的話,這樣的觀測可能表明這顆恆星在當時處於黃超巨星階段[21],鑒於現時對這顆恆星複雜星周環境的研究,這是一種可能性[22]。
在中國,《史記·天官書》說:「參為白虎。三星直者,是為衡石。下有三星,兌,曰罰,為斬艾事。其外四星,左右肩股也。小三星隅置,曰觜,為虎首。
南澳大利亞的原住民群體一直在分享參宿四亮度的變化,至少已有1,000年的口頭講述[23]。
從北極區的緯度來看,參宿四的紅色和天空中比參宿七更高的位置,使因紐特人認為它更亮,當地的一個名字是「Ulluriajjuaq」「大恆星」 [24]。
1836年,約翰·赫歇爾爵士在《天文學概要》(Outlines of Astronomy)中發表了他的觀察結果,描述了參宿四亮度的變化。從1836年到1840年,他注意到參宿四在1837年10月和1839年11月再次超過參宿七時,星等發生了重大變化[25]。隨後是10年的靜止期;然後在1849年,赫歇爾注意到另一個短暫的變化週期,在1852年達到頂峰,但從1957年到1967年只有很小的變化。美國變星觀測者協會(AAVSO)的記錄顯示,在1933年和1942年觀測到的最大亮度為0.2,在1927年和1941年觀測到最小值為1.2[26][27]。這種亮度的變化常被人錯誤的解釋為什麼約翰·拜耳在1603年發表了他的《測天圖》,將這顆恆星命名為「α」,因為它可能與通常更亮的參宿七(「β」)相媲美[28];其實是因為它在接近頭部的肩膀上。
在1920年,阿爾伯特·邁克生和法蘭西斯·皮斯在威爾遜山天文台的2.5米望遠鏡的前面安裝了6米干涉儀。在約翰·安德森的協助下,三人量測了參宿四的角直徑為0.047",根據其視差值 0.018",得出了直徑為×108 km( 3.84AU) 2.58 [29]。然而,周邊昏暗和測量誤差導致了這些測量精度的不確定性。
1950年代和1960年代,有兩項發展影響紅超巨星的恆星對流理論:平流層觀測儀專案和1958年出版的《恆星的結構和演化》,主要是馬丁·史瓦西和他在普林斯敦大學的同事,理查·哈姆的工作[30][31]。這本書傳播了如何應用電腦技術來創建恆星模型的想法,而平流層觀測儀項目則通過使用氣球將望遠鏡攜帶致地球湍流上方,產生了一些迄今為止所見最精細的米粒組織和太陽黑子影像,從而證實了太陽大氣中存在對流[30]。這兩項發展都證明,對我們了解像參宿四這種紅巨星的結構,有著意味深長的衝擊。
在1970年代,天文學家看到了天文成像技術的一些重大進步,從安托萬·拉貝里發明斑點干涉測量開始,這一過程顯著減少了視寧度引起的模糊效應。它增加了地面望遠鏡的光學解析度,允許對參宿四的光球進行更精確的測量[33][34]。隨著威爾遜山、洛克山和在夏威夷毛納基山等山頂上紅外望遠鏡的改進,天體物理學家開始窺視圍繞超巨星的複雜星周殼[35][36][37]。使他們懷疑存在著由對流產生的巨大氣泡[38]。但直到 1980 年代末和 1990 年代初,參宿四成為孔徑掩蔽干涉測量的常規目標時,可見光和紅外成像才取得了突破。這項新技術由卡文迪什天體物理學組的約翰·鮑德溫與同事開創,採用了一個小遮罩,在望遠鏡瞳孔平面上有幾個孔,將孔徑轉換為一組干涉陣列[39]。該技術為參宿四提供了一些最準確的測量,同時揭示了恆星光球上的亮點[40][41][42]。這是除太陽以外的第一張恆星盤面光學和紅外圖像,首先來自地面干涉儀,後來來自COAST望遠鏡的高解析度觀測。用這些儀器觀察到的「明亮斑塊」或「熱點」似乎證實了史瓦西幾十年前提出的一個理論,即大質量對流細胞主導恆星表面[43][44]。
在1995年,哈伯太空望遠鏡的暗天體照相機捕獲了紫外線圖像,其解析度優於地面干涉儀獲得的解析度:這是另一顆恆星盤的第一個常規望遠鏡圖像(或NASA術語中的「直接圖像」)[32]。因為紫外線會被地球大氣層吸收,這些波長的觀測最好由太空望遠鏡進行[45]。像早期的照片一樣,這張圖像包含一個明亮的斑塊,表明西南象限是比恆星表面更熱K的區域 2,000 [46]。隨後用戈達德高解析攝譜儀拍攝的紫外線光譜表明,熱點是參宿四的旋轉極之一。這使旋轉軸與地球方向的傾角約為20°,並且與天北極的方位角約為55°[47]。
在2000年12月發表的一項研究中,用紅外線空間干涉儀(ISI)在中紅外波長下測量了這顆恆星的直徑,產生了±0.5 mas的周邊變暗估計值 - 這個數位與邁克爾遜80年前的發現完全一致 55.2[29][48]。出版時,依巴谷任務的估計視差為±1.64 mas,得出參宿四的估計半徑為 7.63。然而,2009年發表的一項紅外干涉研究宣佈,自1993年以來,這顆恆星以越來越快的速度縮小了15%,但星等卻沒有顯著減少 3.6 AU[49][50]。後續的觀測建議,明顯的收縮可能是由於恆星擴展大氣中的殼層活動[51]。
除了恆星的直徑之外,關於參宿四擴展大氣層的複雜動力學也出現了問題。構成恆星系統的質量隨著恆星的形成和破壞而被回收,紅超巨星是主要貢獻者,但質量損失的過程仍然是一個謎[52]。隨著干涉測量方法的進步,天文學家可能接近解決這個難題。2009年7月,由地面的甚大望遠鏡干涉儀(VLTI)拍攝,歐洲南方天文臺發佈的圖像顯示,大量的氣體羽流從恆星延伸進入周圍的大氣層 30 AU[53]。這些物質拋射等於太陽和海王星之間的距離,是參宿四周圍大氣層中發生的許多個事件之一。天文學家已經確定了參宿四周圍至少有六個殼層。解開恆星演化後期質量損失的謎團,可能會揭示導致這些巨大恆星爆炸性死亡的那些因素[49]。
參宿四是一顆脈動的半規則變星,由於其大小和溫度的變化,它會經歷多次亮度新增和減少的週期[54]。首先注意到參宿四變暗的天文學家是維拉諾瓦大學天文學家理查德·瓦薩托尼克(Richard Wasatonic)和愛德華·吉南(Edward Guinan),以及業餘愛好者托馬斯·卡爾德伍德(Thomas Calderwood)。理論上認為,正常的5.9年光週期最小值和比正常的425天週期更深的巧合是其驅動因素[55]。2019年末推測的其它可能原因是氣體或塵埃的噴發,或恆星表面亮度的波動[56]。
到2020年8月,主要利用哈伯太空望遠鏡的紫外觀測對參宿四進行的長期和廣泛的研究表明,意想不到的變暗可能是由大量超高溫物質噴射到太空造成的。這些物質冷卻後形成了塵雲,阻擋了來自參宿四表面四分之一的星光。哈伯太空望遠鏡在9月、10月和11月捕捉到了緻密、加熱的物質在恆星大氣層中移動的跡象,隨後多架望遠鏡在12月和2020年前幾個月觀察到了更明顯的變暗[57][58][59]。
到2020年1月,參宿四已經從0.5星等變暗至1.5星等,暗了約2.5倍,並在2月份的"天文學家電報"中報告說仍然更暗淡,創紀錄的最小值為 +1.614,並指出這顆恆星目前是他們研究25年來"最不亮和最冷的",並且還計算了半徑的減小[60]。《天文學》雜誌將其描述為「奇異的變暗」[61],普遍的猜測推斷,這可能預示著是即將發生的超新星[62][63]。這使參宿四從 天空中最亮的恆星前10名之一下降到前20名之外[55],明顯比它的近鄰畢宿五暗淡[56]。主流媒體報導討論了關於參宿四可能即將爆發為超新星的猜測[64][65][66][67]。但天文學家指出不太可能馬上發生,預計超新星將在大約10萬年內發生[64][66]。
到2020年2月17日,參宿四的亮度已經保持了大約10天沒有變化,並且顯示出重新變亮的跡象[68]。2020年2月22日,參宿四可能已經完全停止變暗,幾乎結束了變暗事件[69]。2020年2月24日,在過去50年中沒有檢測到紅外線的顯著變化;這似乎與最近的視覺衰退無關,並表明即將發生核心崩潰的可能性不大[70]。同樣在2020年2月24日,進一步的研究表明,「大顆粒星周塵」的遮擋可能是恆星變暗的最可能解釋[71][72]。一項使用次毫米波長觀測的研究排除了灰塵吸收的重要貢獻。相反的,大的星斑似乎才是變暗的原因 [73]。2020年3月31日發表在《天文學家電報》上的後續研究發現,參宿四的亮度迅速上升[74]。
在五月到八月之間幾乎無法從地面觀測到參宿四,只是因為它離太陽太近了。在進入2020年合之前,參宿四的亮度已經達到了+0.4星等。2020年6月和7月使用STEREO-A進行的觀測表明,自4月最後一次地面觀測以來,這顆恆星已暗了0.5星等。這令人驚訝,因為預計2020年8月/9月會出現最大值,下一個最小值應該出現在2021 4月左右。然而,參宿四的亮度變化不規則是眾所周知,這會使得預測變得困難。光度衰減可能表明另一個變暗事件可能比預期的更早發生[75]。2020年8月30日,天文學家報告發現了從參宿四發射的第二個塵雲,並與該恆星最近的光度大幅變暗(8月3日的次極小值)有關[76]。
2021 6月,塵埃被解釋為可能是由其光球上的一塊冷斑引起的[77][78][79][80],在8月,第二個獨立小組證實了這些結果[81][82]。塵埃被認為是恆星噴出的氣體冷卻的結果。2022年8月[83][84][85],使用哈伯太空望遠鏡進行的研究證實了先前的研究,並表明塵埃可能是由表面物質噴發產生的。它還推測,變暗可能來自於短期最小值與長期最小值重合,分別是了416天週期和2,010天週期的最小值,這是天文學家利奧·戈德堡(Leo Goldberg)首次提出的機制[86]。
由於其獨特的橙紅色和在獵戶座中的位置,參宿四很容易用肉眼找到。它是構成冬季大三角星群的三顆恆星之一,它也標誌著冬季六邊形的中心。在北半球,每年的一月初,可以看見它於日落時從東方升起。在3月中旬,這顆恆星在黃昏時已經在南方的天空中。從9月中旬到次年3月中旬(最好在12月中旬)幾乎全球各地的居住者都可以看見,僅僅只有南極洲少數幾個位置在南緯82°更南邊的偏遠研究站才看不見。在南半球的大城市(像是悉尼、布宜諾斯艾利斯、和開普敦),參宿四的高度角幾乎可以達到地平線上49°。一旦來到5月,就只能在太陽剛西沉之際在西方地平線上驚鴻一瞥了。但幾個月後的日出前,又再次出現在東方地平線上。在年中(6月至7月),除了在南緯70°至80°之間的南極地區(在極夜期間,當太陽低於地平線時)的正午左右,肉眼是看不到它的(在白天只有用望遠鏡才能看到)。
在SIMBAD的列表中,參宿四的視星等是0.42,使它的平均亮度是天球上的第9亮星,正好就在水委一的前面。但參宿四是一顆變星,其視星等範圍在0.0到 +1.6等之間變動著[87]。有時它會超越南河三和參宿七成為第七亮的恆星,有時甚至會比五車二更亮,成為第六亮的恆星。在最黯淡的時候,參宿四可能會落後於本身都略有變化的天津四和十字架三[27],並與十字架三競爭第20名的位置。
參宿四的色指數(B–V)是1.85,在圖形上指出這是顆明顯"紅色"的恆星。光球有一個擴展的大氣層,它顯示出強烈的發射線而不是吸收線,這是一種當恆星被厚厚的氣體包層(而不是電離)包圍時發生的現象。取決於光球層徑向速度的波動,這些擴展的氣體曾經被觀察到遠離和朝向參宿四移動的運動。參宿四是天空中最亮的近紅外光源,J波段 (紅外線)星等為−2.99[88];只有大約13%的恆星輻射能以可見光發射。如果人眼對所有波長的輻射都敏感,參宿四將成為夜空中最亮的恆星[27]。
儘管它的誕生地尚不清楚,參宿四通常被認為是一顆孤立的恆星和一顆速逃星,與現時的任何星團或恆星形成區域都沒有關聯[91]。
已經提出參宿四有兩顆光譜伴星。對1968年至1983年偏振數據的分析表明,有一個軌道週期約為2.1年的伴星,並且通過使用散斑干涉法,研究小組得出結論,兩顆伴星中較近的位於距離主恆星±0.01"(≈9 AU),位置角為273°,這個軌道可能會將其置於恆星的 0.06色球內。較遠的伴星位於±0.01"(≈77 AU),位置角為 278° 0.51[92][93]。進一步的研究沒有發現這些同伴的證據,但也不能積極反駁他們的存在[94], 但是,從未完全排除過一個親密的伴星對整體通量做出貢獻的可能性[95]。對參宿四及其附近的高解析度干涉量測科技遠遠超過了20世紀80年代和90年代的科技,但沒有發現任何伴星[53][96]。
視差通常以弧秒為單位,是由觀測者的位置變化,造成被觀測物體位置的視變化。當地球圍繞太陽運行時,每一顆恆星都會移動一個幾分之一弧秒,結合地球軌道提供的基線,這一測量值可以得出到該恆星的距離。自從白塞爾在1838年成功的測量出天鵝座61的視差,天文學家就對參宿四的視距離極為困惑。恆星距離的知識提高了其它恆星參數的準確性,例如恆星的光度,當與角直徑結合時,可以用來計算實際的半徑和有效溫度;光度和同位素豐度也可以用來估計恆星年齡和質量[3]。
在1920年,當第一次以干涉儀研究恆星的直徑時,假設視差是0.18角秒。這等同於距離是56秒差距,或是180光年,這樣不僅獲得的恆星半徑不正確,恆星的特徵也不同。在這之後,有些進行的調查將這神秘的實際距離建議為高達400秒差距,或是1,300光年[3]。
在依巴谷星表公佈之前(1997),有兩份受人尊重的出版物有參宿四最新的視差資料。第一份是耶魯大學天文台(1991)公佈的視差是π = 9.8 ± 4.7 mas,相當於距離大約是102秒差距,或是330光年[98]。第二份是依巴谷輸入星表(1993),它的三角視差是π = 5 ± 4 mas,相當於200秒差距或是650光年-幾乎是耶魯估計值的兩倍[99]。這種不確定性,使研究人員對距離估計使用寬鬆的範圍,這種現象引燃了許多的爭議-不僅僅是在恆星的距離上,還影響到其它的恆星參數[3]。
期待已久的依巴谷任務結果終於在1997年發表(釋出)。解決了這一個問題,新的視差值是π = 7.63 ± 1.64 mas,這相當於131秒差距,或是430光年[100]。因為像參宿四這種變光星,會造成具體的問體影響到它們距離的量化[101]。因此,the large cosmic error in the Hipparcos solution could well be of stellar origin, relating possibly to movements of the photocenter, of order 3.4 mas, in the Hipparcos photometric Hp band.[3][102]
在這次的爭論中,電波天文學的最新發展似乎佔了上風。格雷厄姆和同事們使用美國國家無線電天文台(NRAO)的甚大天線陣(VLA),以新的高空間解析度和多波長無線電對參宿四位置的指引,獲得更精確的估計值,加上依巴谷的資料,提供了新的天文測量解答:π = 5.07 ± 1.10 mas,在嚴謹的誤差因子下得出的距離是197 ± 45 秒差距或643 ± 146 光年[3]。
接下來在計算上的突破將可能來自歐洲太空總署即將進行的蓋亞任務,它將承擔詳細的分析每一顆被觀測恆星的物理性質,揭示亮度、溫度、重力和成分。蓋亞將多次測量每一個亮度暗達20星等和比15等亮的天體位置,精確度達到24微角秒-相當於從1000公里外測量的人髮直徑。攜帶的檢測設備將確保能測量像參宿四這種變星在最暗時的極限,這將解決較早時依巴谷任務位置上絕大部分的局限性。事實上,對最近的那些恆星,將能以小於0.001%的誤差因子來測量他們的距離。即使是靠近銀河中心的恆星,距離大約是30,000光年,距離測量上的誤差也將在小於20%以內[103]。
作為脹縮變化次分類「SRC」的成員,研究人員提供了不同的假設試圖解釋參宿四反覆無常的舞蹈-這導致絕對星等在-5.27至-6.27之間的振盪現象[104]。以我們目前了解的恆星結構認為是這顆超巨星的外層逐漸的膨脹和收縮,造成表面積(光球)交替的增加和減少,和溫度的上升和降低-因此導致測量到這顆恆星的亮度有節奏的在最暗的1.2等,如同1927年早期見到的,和最亮的0.2等,如同1933和1942年,之間變化著。像參宿四這種紅巨星,因為大氣層本來就不穩定因此會通過脈動的方法。當恆星收縮,它吸收越來越多通過的能量,造成大氣層被加熱和膨脹。反過來,當恆星膨脹時,它的大氣層變得稀薄,允許較多的能量逃逸出去並使溫度下降,因此啟動一個新的收縮階段[26]。在計算恆星的脈動和模型都很困難的情況下,看來有幾個交錯的週期。在上個世紀的1930年代,Stebbins和Sanford的研究論文指出有一個由150至300天的短周期變化調製成的大約5.7年的規則循環變化周期[105][106]。
事實上,超巨星始終顯示不規則的光度、極化和光譜的變化,這指出在恆星的表面和擴展的大氣層有著複雜的活動[40]。對照於受到監測的大多數巨星都是有著合理的規則周期的長周期變星,紅巨星通常都是半規則或不規則的,有著脈動特性的變星。在1975年,Martin Schwarzschild發表了一篇具有里程碑意義的論文,認為光度起伏不定的變化是因為一些巨大的對流細胞(米粒斑的模式)覆蓋在恆星表面所導致的[44][107]。在太陽,這些對流細胞,或是稱為太陽米粒,代表熱傳導的一種重要模式-因為那些對流元素主宰著太陽光球的亮度變化[44]。太陽的米粒組織典型的直徑大約是2,000公里的大小(大約相當於印度的表面積),深度大約700公里。在太陽表面大約有200萬個這樣的米粒斑覆蓋著6兆公里2的光球面積,如此巨大的數量產生相對恆定的通量。在這些米粒斑之下,連結著5000至10,000個平均直徑30,000公里,深度達到10,000公里的超米粒斑[108]。對照之下,Schwardschild認為像參宿四這樣的恆星可能只有一打左右像怪獸的米粒斑,直徑達到1億8千萬公里或更大而足以支配恆星的表面,與深度6千萬公里,這是因為紅巨星的包層溫度和密度都很低,導致對流的效率極低。因此,如果在任何時間都只能看見三分之一的對流細胞,它們所觀測到的光度隨著時間的變化就可能反映出恆星整體的光度變化[44]。
Schwarzschild的巨大對流細胞主宰巨星和紅巨星表面的假說似乎有張貼在天文討論社區,當哈伯太空望遠鏡在1995年首度直接捕捉到參宿四表面神秘的熱點時,天文學家就將它歸因為對流[109]。兩年後,天文學家揭露至少有三個亮點造成觀測到這顆恆星錯綜複雜的亮度分佈不對稱,其幅度"符合表面的對流熱點"[41]。然後在2000年,另一組由哈佛-史密松天體物理中心(Cfa)的Alex Lobel領導的小組,注意到參宿四湍流的大氣層中冷與熱的氣流展示出肆虐的風暴。小組推測在恆星大氣層中大片活力充沛的氣體同時向不同的方向膨脹,拋射出長長的溫熱氣體羽流進入寒冷的塵埃包層。另一種解釋是溫熱的氣體在橫越恆星較冷的區域時造成激波的出現[106][110]。這個團隊研究參宿四大氣層的時間超過5年,使用的是哈伯的太空望遠鏡影像攝譜儀在1998年至2003年的資料。他們發現在色球層上活動的氣泡,在恆星的一邊拋起氣體,當落在另一邊時,好像慢動作翻騰的熔岩燈。
天文學家面對的第三個挑戰是測量恆星的角直徑。在1920年12月13日,參宿四成為第一顆在太陽系之外曾經被測量出直徑的天體[29]。雖然干涉儀仍處在發展的初期,經由實驗已經成功的證明參宿四有一個0.047"的均勻盤面。天文學家對周邊昏暗的見解視值得到注意,除了10%的測量誤差,小組得出的結論是由於沿著恆星邊緣部分的光度強烈的減弱,盤面可能還要大17%,因此角直徑大約是0.055"[29][50]。從那時以來,已有其他的研究在進行,得到的範圍從0.042至0.069角[48][111][112]。結合歷史上估計的距離,從180至815光年,與這些資料,得到恆星盤面的直徑無論何處都在2.4至17.8天文單位,因此相對來說半徑是1.2至8.9天文單位[note 1]使用如同太陽系的標準,火星的軌道大約是1.5AU,在小行星帶的穀神星是2.7AU,木星是5.5AU。因此,取決於參宿四與地球的實際距離,光球層可以擴展至超出木星軌道的距離,但不能確定是否會遠達土星的9.5AU。
有幾個原因使精確的直徑很難定義:
為了克服這些限制,研究人員採用了各種方案解決。天文干涉儀的觀念是Hippolyte Fizeau在1868年最早提出的[116]。他提出經由兩個孔洞觀察恆星的干涉,將可以提供恆星空間強度分佈的資訊。從此以後,科學的干涉儀已經發展出多孔徑干涉儀,可以將多個位置的影像彼此重疊。這些"斑點"的影像使用傅立葉分析綜合-一種廣泛用於審視天體的方法,包括研究聯星、類星體、小行星和星系核[117]。自1990年出現的自適應光學徹底改變了高解析度天文學[118],同時,像是依巴谷、哈伯、和史匹哲等太空天文台,也產生其他重大的突破[32][119]。最近,另一項儀器,天文多波束接觸器(the Astronomical Multi-BEam Recombiner,AMBER),提供了新的觀點。做為甚大望遠鏡的一部分,AMBER有能力同時結合3架望遠鏡,使研究人員可以實現微角秒的空間解析。此外,通過組合三個干涉儀#天文干涉儀取代兩個,這是習慣用的傳統干涉測量,AMBER能讓天文學家計算閉合相位-天文成像中的一個重要組成部分[120][121]。
目前的討論圍繞著波長-可見光、近紅外線(NIR)或中紅外線(MIR)-獲得最精確的角度測量[note 1]。最被廣泛接受的解決方案,他的出現,是由加州大學柏克萊分校的太空實驗室的天文學家在中紅外線波段執行的ISI。在曆元2000年,這個團體,在約翰韋納的領導下發表了一份論文,以一般不太被注意的中紅外線,忽略任何可能存在的熱點,顯示參宿四均勻的盤面直徑是54.7 ± 0.3 mas[48]。這篇論文也包含理論上承認的周邊昏暗直徑是55.2 ± 0.5 mas-假設與地球的距離是197.0 ± 45 秒差距,這相當於半徑大約5.5天文單位的外觀(1,180R☉)[note 2]。不過,有鑒於角直徑的誤差在± 0.5 mas,與哈珀(Harper)的數值有± 45秒差距的誤差結合在一起,光球的半徑實際上可以小至4.2AU,或是大至6.9AU [122]。
跨過大西洋,另一組由巴黎天文台佩蘭(Guy Perrin)領導的天文學家在2004年以紅外線對有爭議的參宿四光球半徑做出43.33± 0.04 mas的精確測量[114] "佩蘭的報告給了一個合理的劇本,可以一致性的解釋從可見光到中紅外線的觀測。"這顆恆星看似很厚、溫暖的大氣層使短波的光線散射因而略微增加了直徑,波長在1.3μm以上的散射可以忽略不計。在K和L,上層的大氣層幾乎是透明的-在這些波長上看見的是傳統的光球,所以直徑是最小的。在中紅外線,熱輻射溫暖了大氣層增加了恆星的視直徑。"這些參數還未獲得天文學家廣泛的支持[113]。
最近使用IOTA和VLTI在近紅外線上的研究,強烈的支持佩蘭的分析,直徑的範圍在42.57至44.28 mas,最小的誤差因子小於0.04mas[123][95]。這次討論的中心,是由查理斯湯所領導柏克萊團隊在2009年的第二份論文,報告參宿四的直徑從1993年至2009年縮減了15%,在2008年測量的角直徑是47.0mas,與佩蘭的估計相距不遠[50][124]。不同於以前發表的大部份論文,這份研究專注於一個特定的波長15年的視野,早期的研究通常只持續1至2年,並且是在多種波長上,經常會產生截然不同的結果。縮減的角度分析相當於從1993年看見的56.0 ± 0.1到2008年的47.0 ± 0.1 mas-在15年內幾乎縮減了0.9天文單位,或大約相當於每小時1,000公里[note 3]。天文學家都認為我們完全不知道這顆恆星膨脹和收縮的節奏,果真如此,循環的週期可能是甚麼,雖然湯認為不存在這樣的週期,但它也可能長達數十年[50],其它可能的解釋是光球層由於對流或因為不是球體因而稍微有些不對稱,造成恆星繞著軸旋轉時外觀上的膨脹和收縮[125]。當然,除非我們收集了週期的完整資料,我們不會知道1993年的56.0mas是表現出恆星膨脹的最大值還是平均值,或是2008年的47.0事實上是個極小值。在我們得知確切的數值之前,我們可能還要繼續觀測15年或更久的時間(2025年),也就是說,相當於木星軌道半徑的5.5天文單位,可能將持續很長的一段時間繼續被視為它的平均半徑[126][127]。
天文學家預計參宿四最終會以II型超新星爆發來結束它的生命,剩餘一顆中子星,或是其質量只足夠變成一顆白矮星。但各方對它還有多長壽命並沒有一致的意見:有些人認為它的直徑不停變化代表著參宿四正在融合它的碳原子,而會在數千年之內變成超新星[97];不同意這觀點的人則認為它可以生存更久。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.