熱力學自由能(英語:Thermodynamic free energy)是指一個熱力學系統的能量中可以用來對外做功的部分,是熱力學態函數。[1]自由能可以作為一個熱力學過程能否自發進行的判據。[2]
對限定條件不同的熱力學過程,熱力學自由能有不同表達形式。最常見的有吉布斯自由能G和亥姆霍茲自由能A(或F)。等溫等容過程用亥姆霍茲自由能 A = U - TS 作為自發性判據;等溫等壓過程用吉布斯自由能G = H - TS 作為判據,式中H為焓。[2]兩者間存在G = A + pV (p,壓強;V,體積)關係。[3]
吉布斯自由能和亥姆霍茲自由能
系統經歷等溫、等體積的熱力學過程,可以用亥姆霍茲自由能作為自發性判據。亥姆霍茲自由能定義如下:[1][2][4]
對於一個系統的等溫、等體積的熱力學過程[2]:
- : 過程能自發進行。
- : 系統處於熱力學平衡狀態。
- : 過程無法自發進行。
亥姆霍茲自由能的變化量等於一個系統在等溫條件下能做的最大的功。[2]即:
對於等溫、等壓的熱力學過程,用吉布斯自由能作為該過程自發性的判據。由於化學實驗經常在等壓條件下完成,因此在化學領域中吉布斯自由能更常用。吉布斯自由能定義如下:[2][3]
其中,H是焓, T是溫度, S是熵, U是系統的內能,p是壓力, V是體積。
對於一個系統的等溫、等壓以及無非體積功的熱力學過程[2]:
- : 過程能自發進行。
- : 系統處於熱力學平衡狀態。
- : 過程無法自發進行。
對於體系有非體積功的等溫、等壓的熱力學過程,吉布斯自由能的變化等於系統能做的最大非體積功。[2]即:
統計力學關係
,
上式中,Z為正則系綜配分函數,T為溫度,k為玻爾茲曼常量。結合亥姆霍茲自由能的定義式,
以及熱力學基本關係可以得到,
上式中,μ為化學勢,N為粒子數。因此可以根據上式可以得出熵S、壓強P以及化學勢μ的表達式。[6]
, ,
因為化學反應常常在等壓條件下發生,因此等溫等壓系綜在化學領域有很重要的地位。等溫等壓系綜配分函數可以通過正則系綜配分函數加權求和得到,[6]
上式中 , V 是系統的體積。
等溫等壓系綜下吉布斯自由能可以寫成如下形式。[7]
命名以及符號
熱質說在熱力學發展初期,廣泛用來解釋與熱相關的物理現象。[8]在熱質說中,「熱質」從高溫物體傳遞到低溫物體,並且發展了諸如自由熱(free heat),結合熱(combined heat)以及輻射熱(radiant heat)等概念。物體含有的全部「熱質」共分成兩部分,一部分是自由熱能,對溫度計有所改變者,稱為自由熱;另一部分無法對溫度計造成影響,叫做潛熱(latent caloric)。[9]
19世紀中期,英國物理學家焦耳的熱功當量實驗揭示熱只是一種能量的形式。但是熱質說的影響一直延續到19世紀末。1882年德國物理學家亥姆霍茲延續熱質學說把F = E - TS一項叫做「自由能」。用來表示在特定限定下可以「自由」做功的能量總量。等溫等壓條件下的吉布斯自由能G = H - TS也延續了「自由」一詞。[10]
1988年IUPAC會議對一些科學術語進行規範,討論建議去掉「自由」一詞,直接稱「吉布斯能」(「亥姆霍茲能」同理)。[11]隨後,使用「吉布斯能」、「亥姆霍茲能」的書籍、文獻越來越多。[2]但是,截止2016年,仍有大量書籍、文獻繼續使用「吉布斯自由能」以及「亥姆霍茲自由能」。[12][13][14]
參考文獻
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.