畢達哥拉斯平均是三種平均數的總稱,分別是算術平均數(A)、幾何平均數(G)及調和平均數(H)。其定義如下: A ( x 1 , … , x n ) = 1 n ( x 1 + ⋯ + x n ) {\displaystyle A(x_{1},\ldots ,x_{n})={\frac {1}{n}}(x_{1}+\cdots +x_{n})} G ( x 1 , … , x n ) = x 1 ⋯ x n n {\displaystyle G(x_{1},\ldots ,x_{n})={\sqrt[{n}]{x_{1}\cdots x_{n}}}} H ( x 1 , … , x n ) = n 1 x 1 + ⋯ + 1 x n {\displaystyle H(x_{1},\ldots ,x_{n})={\frac {n}{{\frac {1}{x_{1}}}+\cdots +{\frac {1}{x_{n}}}}}} 二個數a及b的平方平均數及三種畢達哥拉斯平均的圖示。調和平均數標示為H,幾何平均數標示為G,算術平均數標示為A,平方平均數標示為Q 上述的任一個平均數都滿足以下性質: M ( x , x , … , x ) = x {\displaystyle M(x,x,\ldots ,x)=x} M ( b x 1 , … , b x n ) = b M ( x 1 , … , x n ) {\displaystyle M(bx_{1},\ldots ,bx_{n})=bM(x_{1},\ldots ,x_{n})} 若所有 x i {\displaystyle x_{i}} 均為正,三個平均數之間有以下的順序關係: A ( x 1 , … , x n ) ≥ G ( x 1 , … , x n ) ≥ H ( x 1 , … , x n ) {\displaystyle A(x_{1},\ldots ,x_{n})\geq G(x_{1},\ldots ,x_{n})\geq H(x_{1},\ldots ,x_{n})} 其中的等式成立若且唯若所有的 x i {\displaystyle x_{i}} 都相等。上式的不等式即為平均數不等式,也是冪平均不等式中的一個特例。 參照 算術-幾何平均數 外部連結 Pythagorean means on MathWorld (頁面存檔備份,存於網際網路檔案館) Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.