格列戈里·亞歷山德羅維奇·馬爾古利斯(俄語:Григо́рий Алекса́ндрович Маргу́лис,英語:Gregori Aleksandrovich Margulis,1946年2月24日—),俄裔美籍數學家。菲爾茲獎、沃爾夫數學獎及阿貝爾獎得主。與讓-皮埃爾·塞爾並列數學界「三大獎項」大滿貫得主。
生平
生於蘇聯莫斯科。1970年,於莫斯科大學獲得博士學位。以在相群和李群上的研究著名。他在丟番圖逼近中引入了遍歷理論。他在1978年芬蘭赫爾辛基國際數學家大會上被授予菲爾茲獎,2005年獲得以色列沃爾夫數學獎,是歷史上第七位雙料得主。1991年,加盟耶魯大學,現為耶魯數學系講席教授。2001年,當選美國科學院院士。2020年獲得阿貝爾獎。
著作
- Discrete subgroups of semisimple Lie groups (頁面存檔備份,存於網際網路檔案館), Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17. Springer-Verlag, Berlin, 1991. x+388 pp. ISBN 3-540-12179-X MR1090825[2]
- On some aspects of the theory of Anosov systems. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows. Translated from the Russian by Valentina Vladimirovna Szulikowska. Springer-Verlag, Berlin, 2004. vi+139 pp. ISBN 3-540-40121-0 MR2035655[3]
- Oppenheim conjecture. Fields Medallists' lectures, 272–327, World Sci. Ser. 20th Century Math., 5, World Sci. Publ., River Edge, NJ, 1997 MR1622909
- Dynamical and ergodic properties of subgroup actions on homogeneous spaces with applications to number theory. Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 193–215, Math. Soc. Japan, Tokyo, 1991 MR1159213
- Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. (Russian) Problemy Peredachi Informatsii 24 (1988), no. 1, 51–60; translation in Problems Inform. Transmission 24 (1988), no. 1, 39–46
- Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than 1, Invent. Math. 76 (1984), no. 1, 93–120 MR0739627
- Some remarks on invariant means, Monatsh. Math. 90 (1980), no. 3, 233–235 MR0596890
- Arithmeticity of nonuniform lattices in weakly noncompact groups. (Russian) Funkcional. Anal. i Prilozen. 9 (1975), no. 1, 35–44
- Arithmetic properties of discrete groups, Russian Math. Surveys 29 (1974) 107–165 MR0463353
逸事
參見
外部連結
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.