重力紅移(Gravitational redshift)或稱引力紅移指的是光波或者其他波動從引力場源(如巨大星體或黑洞)遠離時,整體頻譜會往紅色端方向偏移,亦即發生「頻率變低,波長增長」的現象。原因是因為光子的能量從一開始的能量 在經過一段距離後,一部分轉化為重力勢能 而光子的能量正比於頻率。[1]
定義
重力紅移的程度常標記為變數z:
其中是極遠處觀測者所測量到的光子波長;是重力源如星球,其上的光源發出時所測量到的光子波長。
重力紅移的現象可以從廣義相對論預測:
其中
幾項要點
- 光線的接收端(遠方的觀察者)必須處在較高的重力勢才能觀察到紅移。一般討論下,觀察者處在無限遠處,重力勢定為0,是高於星球表面的重力勢的。
- 許多大學的實驗結果支持重力紅移的存在。
- 重力紅移不僅僅是廣義相對論獨有的預測。其他重力理論也支持重力紅移,雖然解釋上會有所不同。
最早的證實
1959年龐德-雷布卡實驗展示了譜線重力紅移的存在[2]。此由哈佛大學萊曼物理實驗室的科學家所記載。這個實驗團隊在1965年發表了更加精確的引力紅移的測量。
應用
由於如地球等行星質量並不算大,以致於重力紅移現象不顯著,故近地通訊並沒有針對重力紅移的修正需求。
重力紅移的主要應用是在天文學研究上,透過一些特定原子光譜的紅移,可以估計星球質量。
精確解
重力紅移的精確解(exact solution)條列如下表:
不旋轉 | 旋轉 | |
不帶電 | 史瓦西度規 | 克爾度規 (Kerr metric) |
帶電 | 萊斯納-諾德斯特洛姆度規 (Reissner-Nordström metric) | 克爾-紐曼度規 (Kerr-Newman metric) |
較常用到的重力紅移精確解是針對非轉動、不帶電、球對稱的質量體(即對應於史瓦西度規)。 方程式的形式是:
,
其中
- 是重力常數,
- 是觀測者的徑向坐標(類比於牛頓力學中從物體中心算起的距離,但事實上是史瓦西坐標),
- 是真空中光速。
重力紅移 與 重力時間展長
若利用狹義相對論的相對論性多普勒關係,來計算能量與頻率的變動(假設沒有令情況更複雜的路徑相依效應,比如旋轉黑洞的參考系拖曳效應),則重力紅移和藍移頻率比值會互為倒數,提示了所見的頻率改變對應於不同處時鐘速率不同。
參考系拖曳效應造成的路經相依效應,若被考慮進來,則可能使這種分析方法失效,並且使得要建立起廣域皆認同的各處時鐘速率差異變得困難,雖然並非不能達到。
重力紅移所指的是觀察到的,而引力時間膨脹,則是用以指背後發生機制的推論(處於重力場中的發光源,由於它的時系比較慢,故它發出來的光頻,本來就會比較低)。
參考文獻
外部連結
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.