幾何變換
来自维基百科,自由的百科全书
幾何變換(geometric transformation)是指從具有幾何結構之集合至其自身或其他此類集合的一種對射。具體來說,「幾何變換是一個函數,其定義域與值域為點集合。幾何變換最常見的定義域與值域為同時為R2,或同時為R3。其他的幾何變換則要求須為一對一函數,使之有反函數[1]。」可透過研究這些變換的方法來研究幾何[2]。
幾何變換可以其操作集合的維度來分類(因此可分類出平面變換與空間變換等)。幾何變換亦可依據其保留其性質來分類:
以上每種變換均包含前一種變換[4]。
以法國地圖為例:
-
原圖案
- 共形變換保留角度在一階的相似。
-
保積變換
相同類型的群變換可能是其他變換群的子群。
另見
參考資料
Wikiwand - on
Seamless Wikipedia browsing. On steroids.