伽瑪射線(或γ射線)是原子衰變裂解時放出的射線之一。此種電磁波波長在0.01奈米以下,穿透力很強[1],又攜帶高能量,容易造成生物體細胞內的脫氧核糖核酸(DNA)斷裂進而引起基因突變,因此也可以作醫療之用。[2]1900年由法國科學家保羅·維拉爾發現,他將含氯化鋇通過陰極射線,從照片記錄上看到輻射穿過0.2毫米的箔,拉塞福稱這一貫穿力非常強的輻射為γ射線,是繼α射線β射線後發現的第三種原子核射線。[3]1913年,γ射線被證實為是電磁波,波長短於0.2 ,本質上和X射線是同一射線,只是γ射線與X射線的來源不同而已。

核裂變時會產生並釋放出伽瑪射線
圖中的電磁波譜顯示各種頻率的性質

γ射線通過物質並與原子相互作用時會產生光電效應康普頓效應正負電子對效應。γ射線即使使用較厚材料阻擋一般也仍然有部分射線泄漏,所以通常只能用半吸收厚度來定量材料的阻隔效果。半吸收厚度是指入射射線強度減弱到一半時阻隔物體的厚度。半吸收厚度其數值 ,μ表示阻隔物材料的射線吸收係數。材料的射線吸收係數與射線頻率、能量以及材料種類有關,一般原子序數高和密度高的元素構成的材料其γ射線吸收係數也較高。普通放射源如Cs-137放射源產生的γ射線在鋁、鐵、銅、鉛中的半吸收厚度分別約為3.2cm、2.6cm、1.4cm和0.6cm。

應用

Thumb
伽馬射線
Thumb
α粒子相當於氦的原子核可被紙所阻擋,β粒子相當於電子可被鋁箔所阻擋,γ射線則具有高穿透性。

天文學研究

當人類觀察太空時,看到的為「可見光」,然而電磁波譜的大部份是由不同輻射組成,當中的輻射的波長有較可見光長,亦有較短,大部份單靠肉眼並不能看到。通過探測伽瑪射線能提供肉眼所看不到的太空影像。

在太空中產生的伽瑪射線是由恆星核心的核聚變產生的,因為無法穿透地球大氣層,因此無法到達地球的低層大氣層,只能在太空中被探測到。太空中的伽瑪射線是在1967年由一顆名為「維拉斯」的人造衛星首次觀測到。從20世紀70年代初由不同人造衛星所探測到的伽瑪射線圖片,提供了關於幾百顆此前並未發現到的恆星及可能的黑洞。於90年代發射的人造衛星(包括康普頓伽瑪射線觀測台),提供了關於超新星、年輕星團、類星體等不同的天文信息。

滅菌

伽馬射線具有穿透性和對生物細胞的破壞作用,因此被用於對醫療用品、化妝品、香料進行滅菌。通常使用鈷-60作為輻射源頭。具有滅菌速度快、滅菌徹底,無化學殘留無環境污染等優點。[4]

醫療

傳統放射治療有在使用鈷-60作為單一射源進行治療病人;現在已經較少使用。 伽馬射線立體定向放射治療,又稱為伽馬刀,屬於使用多顆鈷-60來同時照射病人,而病人需要戴上特定的定位器,用於對特定腫瘤(大部份為頭部腫瘤)患者的治療。[5]

參考資料

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.