林-錢方程(Lin-Tsien equation)是林家翹-錢學森和創立的描述可壓縮流體中物體跨音速運動的非線性偏微分方程[1][2]

行波解

利用Maple中的軟件包TWS_solution可得林-錢方程的多種行波解[3]

u(x,y,t)=TWS_sol := {u(x, y, t) = _C1+(-(1/2)*ln(tanh(_C3+_C4*x+_C5*y+_C6*t)+1)+(1/2)*ln(tanh(_C3+_C4*x+_C5*y+_C6*t)-1))*_C2}
g[2] := {u(x, y, t) = _C1+arctan(1/\sqrt(csc(_C3+_C4*x+_C5*y+_C6*t)^2-1))*_C2}
g[2] := {u(x, y, t) = _C1+(-(1/2)*ln(coth(_C3+_C4*x+_C5*y+_C6*t)+1)+(1/2)*ln(coth(_C3+_C4*x+_C5*y+_C6*t)-1))*_C2}
g[2] := {u(x, y, t) = _C1+arctanh(1/\sqrt(1+csch(_C3+_C4*x+_C5*y+_C6*t)^2))*_C2}

找到了一個新的可積(3 + 1)維泛化; 見論文 [4]的系統(40)

行波圖

Thumb
Lin-Tsien equation traveling wave plot
Thumb
Lin Tsien eq TWS extended coth
Thumb
Lin Tsien eq TWS extended csch
Thumb
Lin-Tsien nlpde animation
Thumb
Lin-Tsien nlpde 3d plot
Thumb
Lin Tsien eq extended csc arctan
Thumb
Thumb

參考文獻

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.