廣義力是拉格朗日力學裏面的一個基本概念。在一個物理系統裏,因為力 F {\displaystyle \mathbf {F} \,\!} ,一個粒子經過虛位移 δ r {\displaystyle \delta \mathbf {r} \,\!} ,所作的虛功 δ W {\displaystyle \delta W\,\!} 是 δ W = F ⋅ δ r {\displaystyle \delta W=\mathbf {F} \cdot \delta \mathbf {r} \,\!} 。 轉換至廣義坐標 q 1 , q 2 , q 3 , … q N {\displaystyle q_{1},\ q_{2},\ q_{3},\ \dots \ q_{N}\,\!} , δ W = ∑ j = 1 N F ⋅ ∂ r ∂ q j δ q j {\displaystyle \delta W=\sum _{j=1}^{N}\ \mathbf {F} \cdot {\frac {\partial \mathbf {r} }{\partial q_{j}}}\delta q_{j}\,\!} 。 在上面這個方程的右端,位於虛位移前面的這兩項的整體即為廣義力,用 F {\displaystyle {\boldsymbol {\mathcal {F}}}\,\!} 表示為: F j = F ⋅ ∂ r ∂ q j {\displaystyle {\mathcal {F}}_{j}=\mathbf {F} \cdot {\frac {\partial \mathbf {r} }{\partial q_{j}}}\,\!} 。 虛功與廣義力的關係是 δ W = ∑ j = 1 N F j δ q j {\displaystyle \delta W=\sum _{j=1}^{N}\ {\mathcal {F}}_{j}\delta q_{j}\,\!} 。 稱 F j {\displaystyle {\mathcal {F}}_{j}\,\!} 為關於廣義坐標 q j {\displaystyle q_{j}\,\!} 的廣義力。因為 F j q j {\displaystyle {\mathcal {F}}_{j}q_{j}\,\!} 的量綱是功,如果 q j {\displaystyle q_{j}\,\!} 是距離,則 F j {\displaystyle {\mathcal {F}}_{j}\,\!} 與力的量綱相同;如果 q j {\displaystyle q_{j}\,\!} 是角,則它與力矩的量綱相同。 參閱 拉格朗日力學 哈密頓力學 自由度 虛功 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.