Loading AI tools
来自维基百科,自由的百科全书
廣義逆(Generalized inverse)[1],是線性代數中針對矩陣的一種運算。一個矩陣A的廣義逆叫做A的廣義逆陣,是指具有部份逆矩陣的特性,但是不一定具有逆矩陣的所有特性的另一矩陣。假設一矩陣及另一矩陣,若滿足,則即為的廣義逆陣。
廣義逆也稱為偽逆(pseudoinverse)[2],有些時候,偽逆特指摩爾-彭若斯廣義逆。
建構廣義逆陣的目的是針對可逆矩陣以外的矩陣(例如非方陣的矩陣)可以找到一矩陣有一些類似逆矩陣的特性。任意的矩陣都存在廣義逆陣,若一矩陣存在逆矩陣,逆矩陣即為其唯一的廣義逆陣。有些廣義逆陣可以定義在和結合律乘法有關的數學結構(例如半群)中。
考慮以下的線性方程
其中為的矩陣,而 , 的列空間。 若矩陣為可逆矩陣,則即為方程式的解。而若矩陣為可逆矩陣
假設矩陣不可逆或是,需要一個適合的矩陣使得下式成立
因此為線性系統的解。 而同樣的,階的矩陣也會使下式成立
因此可以用以下的方式定義廣義逆陣:假設一個的矩陣,的矩陣若可以使下式成立,矩陣即為的廣義逆陣
以下是一種產生廣義逆陣的方式[3]:
彭若斯條件可以用來定義不同的廣義逆陣:針對及
1.) | |
2.) | |
3.) | |
4.) |
若滿足條件(1.),即為的廣義逆陣,若滿足條件(1.)和(2.),則為的廣義反身逆陣(generalized reflexive inverse),若四個條件都滿足,則為的摩爾-彭若斯廣義逆。
以下是一些其他種類的廣義逆陣
任何一種廣義逆陣都可以用來判斷線性方程組是否有解,若有解時列出其所有的解[4]。若以下n × m的線性系統有解存在
其中向量為未知數,向量b為常數,以下是所有的解
其中參數w為任意矩陣,而為的任何一個廣義逆陣。解存在的條件若且唯若為其中一個解,也就是若且唯若。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.