在數論上,除數函數 σ x ( n ) {\displaystyle \sigma _{x}(n)} 是一類算術函數,定義為 n {\displaystyle n} 的正因數的 x {\displaystyle x} 次冪之和,即 σ x ( n ) = ∑ d | n d x {\displaystyle \sigma _{x}(n)=\sum _{d|n}d^{x}} 。 此條目需要擴充。 (2013年2月14日)此條目可參照英語維基百科相應條目來擴充。 其中一些特殊情況: σ 0 ( n ) {\displaystyle \sigma _{0}(n)} : n {\displaystyle n} 的正因數的數目 σ 1 ( n ) {\displaystyle \sigma _{1}(n)} : n {\displaystyle n} 的正因數之和(包括自己),若扣除 n {\displaystyle n} 本身則稱為真因數和。 More information , ... 部分 σ x ( n ) {\displaystyle \sigma _{x}(n)} 的值 n {\displaystyle n} x {\displaystyle x} 0 1 2 1 1 1 1 2 2 3 5 3 2 4 10 4 3 7 21 5 2 6 26 10 4 18 130 12 6 28 210 20 6 42 546 25 3 31 651 Close σ x ( n ) {\displaystyle \sigma _{x}(n)} 都是積性函數,但不是完全積性。 σ x ( n ) = ∏ i = 1 r p i ( a i + 1 ) x − 1 p i x − 1 {\displaystyle \sigma _{x}(n)=\prod _{i=1}^{r}{\frac {p_{i}^{(a_{i}+1)x}-1}{p_{i}^{x}-1}}} ,其與 σ x ( n ) = ∏ i = 1 r ∑ j = 0 a i p i j x = ∏ i = 1 r ( 1 + p i x + p i 2 x + ⋯ + p i a i x ) {\displaystyle \sigma _{x}(n)=\prod _{i=1}^{r}\sum _{j=0}^{a_{i}}p_{i}^{jx}=\prod _{i=1}^{r}(1+p_{i}^{x}+p_{i}^{2x}+\cdots +p_{i}^{a_{i}x})} ( n {\displaystyle n} 的各因數的 x {\displaystyle x} 次方後的和,其在 x = 1 {\displaystyle x=1} 時即為 n {\displaystyle n} 包括 n {\displaystyle n} 本身在內的各因數的和)相等。 σ x ( n ) = ∑ μ = 1 n μ x − 1 ∑ ν = 1 μ cos 2 π ν n μ . {\displaystyle \sigma _{x}(n)=\sum _{\mu =1}^{n}\mu ^{x-1}\sum _{\nu =1}^{\mu }\cos {\frac {2\pi \nu n}{\mu }}.} ∑ n = 1 ∞ σ a ( n ) n s = ζ ( s ) ζ ( s − a ) . {\displaystyle \sum _{n=1}^{\infty }{\frac {\sigma _{a}(n)}{n^{s}}}=\zeta (s)\zeta (s-a).} ∑ n = 1 ∞ σ a ( n ) σ b ( n ) n s = ζ ( s ) ζ ( s − a ) ζ ( s − b ) ζ ( s − a − b ) ζ ( 2 s − a − b ) . {\displaystyle \sum _{n=1}^{\infty }{\frac {\sigma _{a}(n)\sigma _{b}(n)}{n^{s}}}={\frac {\zeta (s)\zeta (s-a)\zeta (s-b)\zeta (s-a-b)}{\zeta (2s-a-b)}}.} Tom M. Apostol, Introduction to Analytic Number Theory, (1976) Springer-Verlag, New York. ISBN 0-387-90163-9 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.