在理论物理学和宇宙学中,半自旋质量维度一费米子(mass dimension one fermions of spin one half)是暗物质的候选者。这些费米子与已知的物质粒子,如电子或中微子,有着根本的不同。尽管它们被有着半自旋,但它们并不是由著名的狄拉克体系描述的,而是由一种旋量克莱恩-戈登体系(spinorial Klein-Gordon formalism)描述的。
2004年,Dharam Vir Ahluwalia(IIT Guwahati)与Daniel Grumiller合作,提出了一个关于质量维度一半自旋费米子的意外理论发现
[1]
[2]。在随后的十年中,许多小组探索了新构造有趣的数学和物理性质,而D. V. Ahluwalia 和他的学生进一步完善了体系
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12][13]
[14]
[15]
[16]。
然而,体系有两个令人不安的特点,即非局域性和对洛伦兹对称的微妙破坏。这两个问题的起源现在被追溯到一个隐藏的自由定义,旋量和伴随的关联场[17]。因此,现在有了一个全新的自旋半费米子量子理论,它不存在上述所有问题。新费米子的相互作用不仅限于四维四次自相互作用,而且限于与希格斯粒子的四维耦合。新费米子与中微子的广义Yukawa耦合提供了迄今为止未被怀疑的轻子数违反来源。因此,新的费米子为标准模型的狄拉克费米子提出了一个第一原则,暗物质伙伴与质量维度的对比,后者为三个半费米子与前者为一个半费米子,而没有改变费米子到玻色子的统计数据。
质量维度一费米子自旋半场用Elko场作为其展开系数。Elko是最初德语 "Eigenspinoren des Ladungskonjugationsoperators"的缩写,表示自旋体,它们是电荷共轭算符的本征自旋体。由于新费米子的质量维数与标准模型物质场不匹配,他们被认为是暗物质的候选者。由于它们的类标量质量维数,它们与质量维数3/2狄拉克费米子有显著差异[18]。
质量维度一费米子通过提供第一原理暗物质和暗能量场,对宇宙学有着意想不到的影响。2005年Ahluwalia-Grumiller 论文发表后,Christian Boehmer率先将Elko应用到宇宙学中,并认为Elko不仅是主要的暗物质候选者,也是宇宙膨胀的主要候选者[19]。Einstein–Cartan–Elko系统由Boehmer首次引入宇宙学中。其他人已经证明,Elko也可以诱导一个时变的宇宙学常数[20]。Abhishek Basak和同事们认为,快速滚动的宇宙膨胀吸引子点对于Elko来说是独一无二的,它独立于潜在的形式[21]
[22]。Roldao da Roch研究了膜上的Elko局域化现象[23]
[24],并将其作为一种探索时空奇异拓扑特征的工具[25]。
以下参考文献作为Elko场和质量维度一费米子的参考
[26]
[27]
[28]
[21]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37][38]
[39]
[40]
[41]
[42]
[43]
[39]
[44]
[45]
[46]
[47]
[48]
[48]中。
阿鲁瓦利亚在2017年解释了如何规避温伯格不走定理。同样在2017年发现[49][50],质量维度一费米子即使没有宇宙学常数,也能通过量子效应诱导一个“宇宙学常数”项。这些导致非消失的效应可能是早期宇宙阶段膨胀阶段的原因。此外,对于较晚的演化,对应于具有时变宇宙学项的模型,这种量子效应与先前的最新研究一致[51]。
D. V. Ahluwalia and D. Grumiller,
Spin half fermions with mass dimension one: Theory, phenomenology, and dark matter,
JCAP 0507 012 (2005)
doi:10.1088/1475-7516/2005/07/012
[hep-th/0412080]
D. V. Ahluwalia and D. Grumiller,
Dark matter: A Spin one half fermion field with mass dimension one?,
Phys. Rev. D 72 ,067701 (2005)
doi:10.1103/PhysRevD.72.067701
[hep-th/0410192].
D. V. Ahluwalia and A. C. Nayak,
Elko and mass dimension one field of spin one half: causality and Fermi statistics,
Int. J. Mod. Phys. D 23, no. 14, 1430026 (2015)
doi:10.1142/S0218271814300262
[arXiv:1502.01940 [hep-th]].
D. V. Ahluwalia and S. P. Horvath,
Very special relativity as relativity of dark matter: The Elko connection,
JHEP 1011, 078 (2010)
doi:10.1007/JHEP11(2010)078
[arXiv:1008.0436 [hep-ph]].
D. V. Ahluwalia, C. Y. Lee and D. Schritt,
Self-interacting Elko dark matter with an axis of locality,
Phys. Rev. D 83, 065017 (2011)
doi:10.1103/PhysRevD.83.065017
[arXiv:0911.2947 [hep-ph]].
D. V. Ahluwalia, C. Y. Lee and D. Schritt,
Elko as self-interacting fermionic dark matter with axis of locality,
Phys. Lett. B 687, 248 (2010)
doi:10.1016/j.physletb.2010.03.010
[arXiv:0804.1854 [hep-th]].
A. E. Bernardini and R. da Rocha,
Dynamical dispersion relation for ELKO dark spinor fields,
Phys. Lett. B 717, 238 (2012)
doi:10.1016/j.physletb.2012.09.004
[arXiv:1203.1049 [hep-th]].
R. da Rocha and W. A. Rodrigues, Jr.,
Where are ELKO spinor fields in Lounesto spinor field classification?,
Mod. Phys. Lett. A 21, (2006) 65
doi:10.1142/S0217732306018482
[math-ph/0506075].
R. da Rocha and J. M. Hoff da Silva,
From Dirac spinor fields to ELKO,
J. Math. Phys. 48, 123517 (2007)
doi:10.1063/1.2825840
[arXiv:0711.1103 [math-ph]].
L. Fabbri,
Conformal Gravity with the most general ELKO Matter,
Phys. Rev. D 85, 047502 (2012)
doi:10.1103/PhysRevD.85.047502
[arXiv:1101.2566 [gr-qc]].
L. Fabbri and S. Vignolo,
The most general ELKO Matter in torsional f(R)-theories,
Annalen Phys. 524, 77 (2012)
doi:10.1002/andp.201100006
[arXiv:1012.4282 [gr-qc]].
K. E. Wunderle and R. Dick,
A Supersymmetric Lagrangian for Fermionic Fields with Mass Dimension One,
Can. J. Phys. 90, 1185 (2012)
doi:10.1139/p2012-075
[arXiv:1010.0963 [hep-th]].
R. da Rocha and J. M. Hoff da Silva,
ELKO, flagpole and flag-dipole spinor fields, and the instanton Hopf fibration,
Adv.\ Appl.\ Clifford Algebras 20, 847 (2010)
doi:10.1007/s00006-010-0225-9
[arXiv:0811.2717 [math-ph]].
D. V. Ahluwalia, The theory of local mass dimension one fermions of spin one half, Adv. Appl. Clifford Algebras 27 (2017) no.3, 2247-2285 . doi:10.1007/s00006-017-0775-1
M. Dias, F. de Campos and J. M. Hoff da Silva,
``Exploring Elko typical signature,
Phys. Lett. B 706, 352 (2012)
doi:10.1016/j.physletb.2011.11.030
[arXiv:1012.4642 [hep-ph]].
C.G.Boehmer,
The Einstein-Elko system: Can dark matter drive inflation?,
Annalen Phys.\ 16, 325 (2007),
doi:10.1002/andp.200610237
[gr-qc/0701087].
S.H. Pereira et al.
Λ(t) cosmology induced by a slowly varying Elko field, JCAP 1701, no. 01, 055 (2017)
doi:10.1088/1475-7516/2017/01/055
[arXiv:1608.02777 [gr-qc]].
A. Basak, J. R. Bhatt, S. Shankaranarayanan and K. V. Prasantha Varma,
Attractor behaviour in ELKO cosmology,
JCAP 1304, 025 (2013)
doi:10.1088/1475-7516/2013/04/025
[arXiv:1212.3445 [astro-ph.CO]].
H. M. Sadjadi,
On coincidence problem and attractor solutions in ELKO dark energy model,
Gen. Rel. Grav.44, 2329 (2012)
doi:10.1007/s10714-012-1392-x
[arXiv:1109.1961 [gr-qc]].
S. H. Pereira, A. Pinho S.S. and J. M. Hoff da Silva,
Some remarks on the attractor behaviour in ELKO cosmology,
JCAP 1408, 020 (2014)
doi:10.1088/1475-7516/2014/08/020
[arXiv:1402.6723 [gr-qc]].
R. da Rocha, J. M. Hoff da Silva and A. E. Bernardini,
Elko spinor fields as a tool for probing exotic topological spacetime features,
Int. J. Mod. Phys. Conf. Ser. 3, 133 (2011).
doi:10.1142/S201019451100122X
I. C. Jardim, G. Alencar, R. R. Landim and R. N. Costa Filho,
Solutions to the problem of ELKO spinor localization in brane models,
Phys.\ Rev.\ D 91, no. 8, 085008 (2015)
doi:10.1103/PhysRevD.91.085008
[arXiv:1411.6962 [hep-th]]
Y. X. Liu, X. N. Zhou, K. Yang and F. W. Chen,
Localization of 5D Elko Spinors on Minkowski Branes,
Phys. Rev. D 86, 064012 (2012)
doi:10.1103/PhysRevD.86.064012
[arXiv:1107.2506 [hep-th]].
A. Basak and S. Shankaranarayanan,
Super-inflation and generation of first order vector perturbations in ELKO,
JCAP 1505, no. 05, 034 (2015)
doi:10.1088/1475-7516/2015/05/034
[arXiv:1410.5768 [hep-ph]].
J. Lee, T. H. Lee and P. Oh,
Inflation driven by dark spinor and Higgs fields,
Int. J. Mod. Phys. D 23, no. 14, 1444006 (2014).
doi:10.1142/S0218271814440064
A. Pinho S. S., S. H. Pereira and J. F. Jesus,
A new approach on the stability analysis in ELKO cosmology,
Eur. Phys. J. C 75, no. 1, 36 (2015)
doi:10.1140/epjc/s10052-015-3260-9
[arXiv:1407.3401 [gr-qc]].
B. Agarwal, P. Jain, S. Mitra, A. C. Nayak and R. K. Verma,
ELKO fermions as dark matter candidates,
Phys. Rev. D 92, 075027 (2015)
doi:10.1103/PhysRevD.92.075027
[arXiv:1407.0797 [hep-ph]].
J. M. Hoff da Silva and S. H. Pereira,
Exact solutions to Elko spinors in spatially flat Friedmann-Robertson-Walker spacetimes,
JCAP 1403, 009 (2014)
doi:10.1088/1475-7516/2014/03/009
[arXiv:1401.3252 [hep-th]].
S. Kouwn, J. Lee, T. H. Lee and P. Oh,
``Dark spinor model with torsion and cosmology,
Mod. Phys. Lett. A 28, 1350121 (2013)
doi:10.1142/S0217732313501216
[arXiv:1211.2981 [gr-qc]].
J. Lee, T. H. Lee, P. Oh, T. H. Lee and P. Oh,
Conformally-coupled dark spinor and FRW universe,
Phys. Rev. D 86, 107301 (2012)
doi:10.1103/PhysRevD.86.107301
[arXiv:1206.2263 [gr-qc]].
C. G. Boehmer, J. Burnett, D. F. Mota and D. J. Shaw,
Dark spinor models in gravitation and cosmology,
JHEP 1007, 053 (2010)
doi:10.1007/JHEP07(2010)053
[arXiv:1003.3858 [hep-th]].
C. G.~Boehmer and J. Burnett,
Dark spinors with torsion in cosmology,
Phys. Rev. D 78, 104001 (2008)
doi:10.1103/PhysRevD.78.104001
[arXiv:0809.0469 [gr-qc]].
D. Gredat and S. Shankaranarayanan,
Modified scalar and tensor spectra in spinor driven inflation,
JCAP 1001, 008 (2010)
doi:10.1088/1475-7516/2010/01/008
[arXiv:0807.3336 [astro-ph]].
C. G. Boehmer and D. F. Mota,
CMB Anisotropies and Inflation from Non-Standard Spinors,
Phys. Lett. B 663, 168 (2008)
doi:10.1016/j.physletb.2008.04.008
[arXiv:0710.2003 [astro-ph]].
M. Chaves and D. Singleton,
A Unified Model of Phantom Energy and Dark Matter,
SIGMA 4, 009 (2008)
doi:10.3842/SIGMA.2008.009
[arXiv:0801.4728 [hep-th]].
C. G. Boehmer,
Dark spinor inflation: Theory primer and dynamics,
Phys. Rev. D 77, 123535 (2008)
doi:10.1103/PhysRevD.77.123535
[arXiv:0804.0616 [astro-ph]].
C. G. Boehmer and J. Burnett,
Dark spinors with torsion in cosmology,
Phys. Rev. D 78, 104001 (2008)
doi:10.1103/PhysRevD.78.104001
[arXiv:0809.0469 [gr-qc]].
D. V. Ahluwalia,
Theory of neutral particles: McLennan-Case construct for neutrino, its generalization, and a fundamentally new wave equation,
Int. J. Mod. Phys. A 11, 1855 (1996)
doi:10.1142/S0217751X96000973
[hep-th/9409134].
V. V. Dvoeglazov,
Neutral particles in light of the Majorana-Ahluwalia ideas,
Int. J. Theor. Phys. 34, 2467 (1995)
doi:10.1007/BF00670779
[hep-th/9504158].
D. V. Ahluwalia,
Evading Weinberg's no-go theorem to construct mass dimension one fermions: Constructing darkness
Europhysics Letters 118 (2017) no.6, 60001
DOI: 10.1209/0295-5075/118/60001.
R. J. Bueno Rogerio, J. M. Hoff da Silva, M. Dias, S. H. Pereira, Effective lagrangian for a mass dimension one fermionic field in curved spacetime, [arXiv:1709.08707 [hep-th]], https://arxiv.org/abs/1709.08707 (页面存档备份,存于互联网档案馆)
S.H. Pereira et al.
Λ(t) cosmology induced by a slowly varying Elko field, JCAP 1701, no. 01, 055 (2017)
doi:10.1088/1475-7516/2017/01/055
[arXiv:1608.02777 [gr-qc]].