在抽象几何学中,空多胞形,又称虚无多胞形(英语:Null polytope)或零胞体(英语:Nullitope)是指不存在任何元素的多胞形[1],对应到集合论中即为空集[2]。在抽象理论中,所有多胞形都含有空多胞形[3],对应到集合论中即为空集是任意集合的子集,因此有时会称空多胞形为所有多胞形的基底或本质[4]。空多胞形的维度是负一维[5][6][7][8] ,是所有多胞形中维度数最低的元素[9][10][11]。在空多胞形中,最高维度的元素和最低维度的元素是同一个元素[12]。此外,所有空多胞形皆属于正图形[13]。
负一维空间
在抽象几何学中,负一维空间表示比零维空间还低一个维度的负维空间,其代表了空多胞形本身的维度,由于空多胞形是一个空集合,因此负一维空间也等于一个空空间(英语:null space、或称虚无空间、零空间)[3]。也可以定义更低的维度作为空多胞形的基底,或空多胞形的维面,即超空多胞形(英语:Dinull polytope),存于负二维空间[14],不过由于空多胞形已经是空集合了,因此一般不会给“空多胞形的维面”加以定义,或可以理解为超空多胞形并不存在,即空多胞形的维面不存在,或负二维空间不存在,否则如此定义可以一直不停递回下去,例如讨论“超空多胞形的维面”的定义,这不具有任何意义,且这概念仅有出现在文学作品中[15],尚未有普遍接受的学术定义。
正零胞形
依据正图形的定义,一个多胞形必须要具备严格的特征可递特性,对于该几何体内所有同维度的元素(如:点、线、面)都完全具有相同的性质,并且每一个元素皆为一个正图形,而零维多胞形的元素仅有{F−1, F0}、负一维多胞形的元素仅有{F−1}。由于在抽象理论中,所有多胞形都含有空多胞形[3]因此正零胞形也必须是正图形才能满足所有元素都是正图形的定义。
参见
参考文献
外部链接
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.