柯西刚性定理(Cauchy's theorem)是几何学的定理,得名自数学家奥古斯丁-路易·柯西。柯西刚性定理提到二个三维的凸多面体若有其对应面都全等,则两者多胞形本身也会全等。若将凸多面体展开,使各面都在同一个平面上,再加上多面体的哪些面会相连的说明,这可以确定多面体的形状,而且符合的多面体只会有一个。例如,立方体的展开图会是六个正方形,若有一个凸多面体,展开后也是六个正方形,且各面连接方式和立方体展开图相同,则该多面体一定是立方体。不可能有其他不是立方体,但展开图和立方体相同的凸多面体。
此条目可参照英语维基百科相应条目来扩充。 (2021年10月17日) |
柯西刚性定理是结构刚性理论的基础。若有人用刚性材质组成凸多胞形的面,使各面不会变形,面和面之间有铰链相连,所组成的多面体会是刚性结构。
叙述
令P和Q是组合等价的三维凸多面体,也就是说这二个是同构face lattic的凸多面体,再者,P和Q每一对对应的面都互相全等(在进行刚体的平移或旋转运动后就相同),则凸多面体P和Q也是全等的。
上述要求的凸多面体是必要的。考虑一个正二十面体,可以将一个顶点往内压,形成一个非凸的多面体,和原多面体仍然是组合等价,但二者是不同的。
历史
此结果源自欧几里得的《几何原本》,其中提到二个多面体若每一对应面都相等,则二个多面体相同。此一版本的定理是由柯西以约瑟夫·拉格朗日之前的研究为基础,在1813年证明的。在他证明中用到的主要引理里有一个错误,后来是由恩斯特·施泰尼茨、Isaac Jacob Schoenberg及亚历山大·亚历山德罗夫所修正的。更正后的柯西证明又短又优雅,可以列在数学天书中的证明中[1]。
相关条目
参考资料
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.