在数学中,函数的拉普拉斯逆变换是一个分段连续的实函数,满足如下性质:
其中,表示拉普拉斯变换。
可以证明:如果函数具有拉普拉斯逆变换,则唯一(考虑在勒贝格测度为零的点集上彼此不同的函数)。这个定理由马提亚·莱奇于1903年首先证明,因而称之为莱奇定理。[1][2]
梅林反演公式
拉普拉斯逆变换的积分形式,称为梅林反演公式(英语:Mellin's inverse formula)、布罗米奇积分或傅里叶-梅林积分,由线积分定义:
积分路径是复平面中的垂线,其中大于所有奇点的实部,且在积分路径上有界(例如积分路径位于收敛域内)。当所有奇点位于左半平面内,或是整函数时,可以将置零,此时上述积分退化为傅立叶逆变换。
在实践中,复积分的计算可以通过柯西留数定理完成。
珀斯特反演公式
拉普拉斯逆变换的微分形式,称为珀斯特反演公式(英语:Post's inversion formula),以数学家埃米尔·珀斯特 (Emil Post)命名, [3]是一个看似简便但并不常用的拉普拉斯逆变换计算公式。
公式表述如下:设为区间[0, +∞) 的指数阶函数,存在实数b ,使满足:
则对于任意,的拉普拉斯变换均存在且对于s无限可微。设是的拉普拉斯变换,则可由下式定义:
其中,是对的k阶导数。
分析公式可以看出,该方法需要计算函数的任意高阶导数,这在大多数应用场景下并不现实。
随着个人计算机的出现,该公式主要用于处理拉普拉斯逆变换的近似或渐近分析,及通过格伦瓦尔德-莱特尼科夫(Grünwald-Letnikov)微积分计算导数。
随着计算科学的进步,珀斯特反演公式引起了人们兴趣,由于其不需要的具体极点坐标,通过数次逆梅林变换,可能实现对黎曼猜想的渐近分析。
软件工具
- InverseLaplaceTransform (页面存档备份,存于互联网档案馆):在Mathematica中求拉普拉斯逆变换的解析解
- 使用 Mathematica 中的复数域对拉普拉斯变换进行多精度数值反演 (页面存档备份,存于互联网档案馆)[4]
- ilaplace (页面存档备份,存于互联网档案馆):在MATLAB中求拉普拉斯逆变换的解析解
- Matlab 中拉普拉斯变换的数值反演
- Matlab中基于集中矩阵指数函数的拉普拉斯变换数值反演 (页面存档备份,存于互联网档案馆)
相关条目
参考链接
相关书目
外部链接
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.