在统计力学中,O(n)模型是易辛模型的推广,它描述了晶格的自旋。[1] 哈密顿量是 H = − J ∑ ⟨ i , j ⟩ s i ⋅ s j {\displaystyle H=-J{\sum }_{\langle i,j\rangle }\mathbf {s} _{i}\cdot \mathbf {s} _{j}} s i ∈ R n {\displaystyle \mathbf {s} _{i}\in R^{n}} , ⟨ i , j ⟩ {\displaystyle \langle i,j\rangle } 代表晶格上每一对相邻的格子。 场论 F ( ϕ ) = ∫ d d x 1 2 ( ∂ ϕ ) 2 + m 2 2 ϕ 2 + g ( ϕ 2 ) 2 + … {\displaystyle F(\phi )=\int d^{d}x{\frac {1}{2}}(\partial \phi )^{2}+{\frac {m^{2}}{2}}\phi ^{2}+g(\phi ^{2})^{2}+\ldots } ( ∂ ϕ ) 2 = ∑ i , a ( ∂ i ϕ a ) 2 {\displaystyle (\partial \phi )^{2}=\sum _{i,a}(\partial _{i}\phi _{a})^{2}} ϕ = ( ϕ 1 , … , ϕ N ) {\displaystyle \phi =(\phi _{1},\ldots ,\phi _{N})} 举例 n = 0 {\displaystyle n=0} :自避行走[2][3] n = 1 {\displaystyle n=1} :易辛模型 n = 2 {\displaystyle n=2} :XY模型 n = 3 {\displaystyle n=3} :海森堡模型 n = 4 {\displaystyle n=4} :标准模型中希格斯场的玩具模型 玻茨模型也描述其他易辛模型的推广。 相关条目 大N展开 Mermin–Wagner定理 杨米尔斯场论 阅读 Peskin, Schroeder. Intro QFT. David Tong. Statistical Field Theory. https://katzgraber.org/teaching/SS07/files/kay.pdf(页面存档备份,存于互联网档案馆) 参考文献 [1]Stanley, H. E. Dependence of Critical Properties upon Dimensionality of Spins. Phys. Rev. Lett. 1968, 20: 589–592. Bibcode:1968PhRvL..20..589S. doi:10.1103/PhysRevLett.20.589. [2]de Gennes, P. G. Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. A. 1972, 38: 339–340. Bibcode:1972PhLA...38..339D. doi:10.1016/0375-9601(72)90149-1. [3]Gaspari, George; Rudnick, Joseph. n-vector model in the limit n→0 and the statistics of linear polymer systems: A Ginzburg–Landau theory. Phys. Rev. B. 1986, 33: 3295–3305. Bibcode:1986PhRvB..33.3295G. doi:10.1103/PhysRevB.33.3295. 这是一篇物理学小作品。您可以通过编辑或修订扩充其内容。查论编Wikiwand - on Seamless Wikipedia browsing. On steroids.