饮者悖论(也被称为饮者定理,饮者原理,或饮酒原理)是经典谓词逻辑的一个定理。它实际上并不是一个悖论。它的明显的矛盾的性质来自于它通常的在自然语言中的表述:在酒吧里会有一个人,对于这个人,如果他在喝酒,那么所有在酒吧里的人都在喝酒。 有两点看起来是反直觉的 1) 这里面有一个人,他会引起其他人喝酒。2)这里有一个人,一整夜他都是最后一个喝酒的。第一个反对的理由是由于混淆了形式的 IF...THEN 陈述与因果关系(见相关不蕴涵因果)。定理的形式化陈述是不受时间限制的,我们可以消除第二个反对理由是因为,在一个时刻使得陈述成立的那个特别的人(见证者),并不需要与在任何其它时刻使得陈述成立的那个人是同一个人。实际的定理是
其中 D 是一个任意的谓词,P是一个任意的集合。这个悖论是因数理逻辑学家雷蒙·思木里安而广为人知的。雷蒙·思木里安在他 1978 年出版的书 What is the Name of this Book?[1] 中称它为 “饮酒原理”。
证明
以下证明为借助 Coq 的 proof script.
Lemma drinker (X: Type)(d: X -> Prop):
XM -> (exists x: X, True) -> exists x, d x -> forall x, d x.
Proof.
intros xm A. assert(s:= xm). specialize (s (exists x, d x -> forall x, d x)). destruct s as [s0 | s1].
- exact s0.
- exfalso. apply s1. destruct A as [x _]. exists x. intros B x0. specialize (xm (d x0)). destruct xm as [xm0 | xm1].
-- exact xm0.
-- exfalso. apply s1. exists x0. intros C. exfalso. exact(xm1 C).
Qed.
参考资料
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.