报酬递减(英语:diminishing returns)又名收益递减报酬递减法则收益递减法则(law of diminishing returns)[1]产量递减原则(principle of diminishing marginal productivity)[2]边际报酬递减边际收益递减(diminishing marginal returns)、边际报酬递减法则边际回报递减定律(law of diminishing marginal returns)[3]以及边际产量递减法则(principle of diminishing marginal productivity)等,在经济学中,指在投入生产要素后,每单位生产要素随著所能提供的产量增加发生递减的现象。

早期的经济学家,忽略了科学与技术的进步可以增加产量,认为在人口的增加下,随著边际报酬递减的影响,会发生人均产出持续下降,造成人类生活在痛苦的水平中,类似的理论在也应用在托马斯·马尔萨斯的著作《人口论》中。然而科学与技术的进步使得人类没有发生生产停滞的情况,甚至还抵过人口增加的影响,使人类的生活水平提高。[4]此外,科技的发展不是线性的,[5]一些研究指出,全球范围内的科技创新速率在1873年达到顶峰之后,便开始趋缓直到现在,[6][7]已开发国家的经济与技术水准发展变慢,[8]是一个接近停滞而非加速的状态。有观点认为人类的科技发展正在接近一个科技奇点[9]

公式表达

历史

最早提出时间为1768年,古典经济学家安妮·罗伯特·雅克·杜尔哥(Anne Robert Jacques Turgot)认为,在符合古典经济学认为的最高产量条件(生产要素比例最适:不管增或减任一的生产要素都会导致产量的下降)的情况下,会有三阶段的变化。[10]

  • 阶段一:边际产量上升,平均产量上升;
  • 阶段二:边际产量递减,平均产量上升;
  • 阶段三:平均产量递减。

经济学家约翰‧海因里希冯·杜能托马斯·马尔萨斯大卫·李嘉图等人也对此也有所讨论,然而其中开始引起关注的是大卫·李嘉图托马斯·马尔萨斯间的讨论:[11]

  • 没有投入就没有产出,因此生产线由原点开始。
  • 生产要素初始投入时边际报酬最高。
  • 边际报酬持续递减。

而同样的概念也应用在托马斯·马尔萨斯其著作《人口论》提出的人口铁律(Iron Law of Population)中。[12]

分析

Thumb
短期生产函数中Α点以右开始,出现边际报酬递减的情形。

边际报酬递减现象,在经济学的产量分析中出现,在此分析中,可分为发生于长期与短期两种不同的假设,而边际报酬递减则常出现于产量的短期分析中,长期分析则因科学与技术进步使生产效率改变,边际报酬也因此发生变化,无法确知影响。

然而在短期也因为生产技术的特性及配合资本投入量的多寡,很难有一个定论,仅能就实证惯律(empirical regularity)显示[13]。短期产量受到固定的生产要素以及变动的生产要素影响而发生变化,由于一开始时就有固定要素的存在,增加变动的生产要素会增加对固定的生产要素的使用效率,因此边际产量增加。然而增加到一定量后,由于受限于固定的生产要素的数量,再增加生产要素反而出现不效率,造成边际报酬递减。以左图的短期生产函数为例,边际产量(marginal product)在Α点达到最高点,然后开始递减(diminish),显示变动生产要素(variable factors)增加,但固定生产因素(fixed factors)所带来的产量增长因受限而下降。

参考文献

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.