超几何分布(Hypergeometric distribution)是统计学上一种离散机率分布。它描述了由有限个物件中抽出 n {\displaystyle n} 个物件,成功抽出 k {\displaystyle k} 次指定种类的物件的概率(抽出不放回 (without replacement))。 事实速览 参数, 值域 ...超几何分布 概率质量函数 累积分布函数参数 N ∈ { 0 , 1 , 2 , … } K ∈ { 0 , 1 , 2 , … , N } n ∈ { 0 , 1 , 2 , … , N } {\displaystyle {\begin{aligned}N&\in \left\{0,1,2,\dots \right\}\\K&\in \left\{0,1,2,\dots ,N\right\}\\n&\in \left\{0,1,2,\dots ,N\right\}\end{aligned}}} 值域 k ∈ { max ( 0 , n + K − N ) , … , min ( n , K ) } {\displaystyle k\,\in \,\left\{\max {(0,\,n+K-N)},\,\dots ,\,\min {(n,\,K)}\right\}} 概率质量函数 ( K k ) ( N − K n − k ) ( N n ) {\displaystyle {{{K \choose k}{{N-K} \choose {n-k}}} \over {N \choose n}}} 累积分布函数 1 − ( n k + 1 ) ( N − n K − k − 1 ) ( N K ) 3 F 2 [ 1 , k + 1 − K , k + 1 − n k + 2 , N + k + 2 − K − n ; 1 ] {\displaystyle 1-{{{n \choose {k+1}}{{N-n} \choose {K-k-1}}} \over {N \choose K}}\,_{3}F_{2}\!\!\left[{\begin{array}{c}1,\ k+1-K,\ k+1-n\\k+2,\ N+k+2-K-n\end{array}};1\right]} 其中 p F q {\displaystyle \,_{p}F_{q}} 为广义超几何函数期望值 n K N {\displaystyle n{K \over N}} 众数 ⌈ ( n + 1 ) ( K + 1 ) N + 2 ⌉ − 1 {\displaystyle \left\lceil {\frac {(n+1)(K+1)}{N+2}}\right\rceil -1} , ⌊ ( n + 1 ) ( K + 1 ) N + 2 ⌋ {\displaystyle \left\lfloor {\frac {(n+1)(K+1)}{N+2}}\right\rfloor } 方差 n K N ( N − K ) N N − n N − 1 {\displaystyle n{K \over N}{(N-K) \over N}{N-n \over N-1}} 偏度 ( N − 2 K ) ( N − 1 ) 1 2 ( N − 2 n ) [ n K ( N − K ) ( N − n ) ] 1 2 ( N − 2 ) {\displaystyle {\frac {(N-2K)(N-1)^{\frac {1}{2}}(N-2n)}{[nK(N-K)(N-n)]^{\frac {1}{2}}(N-2)}}} 峰度 1 n K ( N − K ) ( N − n ) ( N − 2 ) ( N − 3 ) ⋅ {\displaystyle \left.{\frac {1}{nK(N-K)(N-n)(N-2)(N-3)}}\cdot \right.} [ ( N − 1 ) N 2 ( N ( N + 1 ) − 6 K ( N − K ) − 6 n ( N − n ) ) + {\displaystyle {\Big [}(N-1)N^{2}{\Big (}N(N+1)-6K(N-K)-6n(N-n){\Big )}+{}} + 6 n K ( N − K ) ( N − n ) ( 5 N − 6 ) ] {\displaystyle {}+6nK(N-K)(N-n)(5N-6){\Big ]}} 矩生成函数 ( N − K n ) 2 F 1 ( − n , − K ; N − K − n + 1 ; e t ) ( N n ) {\displaystyle {\frac {{N-K \choose n}{_{2}F_{1}(-n,-K;N-K-n+1;e^{t})}}{N \choose n}}} 特征函数 ( N − K n ) 2 F 1 ( − n , − K ; N − K − n + 1 ; e i t ) ( N n ) {\displaystyle {\frac {{N-K \choose n}{\,_{2}F_{1}(-n,-K;N-K-n+1;e^{it})}}{N \choose n}}} 关闭 例如在有 N {\displaystyle N} 个样本,其中 K {\displaystyle K} 个是不及格的。超几何分布描述了在该 N {\displaystyle N} 个样本中抽出 n {\displaystyle n} 个,其中 k {\displaystyle k} 个是不及格的个数: f ( k ; n , K , N ) = ( K k ) ( N − K n − k ) ( N n ) {\displaystyle f(k;n,K,N)={{{K \choose k}{{N-K} \choose {n-k}}} \over {N \choose n}}} 上式可如此理解: ( N n ) {\displaystyle {\tbinom {N}{n}}} 表示所有在 N {\displaystyle N} 个样本中抽出 n {\displaystyle n} 个的方法数目。 ( K k ) {\displaystyle {\tbinom {K}{k}}} 表示在 K {\displaystyle K} 个样本中,抽出 k {\displaystyle k} 个的方法数目,即组合数,又称二项式系数。剩下来的样本都是及格的,而及格的样本有 N − K {\displaystyle N-K} 个,剩下的抽法便有 ( N − K n − k ) {\displaystyle {\tbinom {N-K}{n-k}}} 若 n = 1 {\displaystyle n=1} ,超几何分布退化为伯努利分布。 Remove ads 若随机变量 X {\displaystyle X} 服从参数为 n , K , N {\displaystyle n,K,N} 的超几何分布,则记为 X ∼ H ( n , K , N ) {\displaystyle X\sim H(n,K,N)} 。 几何分布 二项式分布 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for FirefoxRemove ads
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.