质数螺旋(Ulam spiral)是一个简单的展示出素数的一定明显规律的结构,同时它指出一些二次多项式有着大量生成素数(富素数)的特性。该图形是由数学家斯坦尼斯瓦夫·乌拉姆在1963年,在一个科学会议上听取一个“又长又无聊的”报告[1]时信手涂鸦所发现的。不久以后,作为一个计算机图形的早期应用,乌拉姆与他的协作者迈伦·斯坦(Myron Stein)和马克·韦尔斯(Mark Wells)在洛斯阿拉莫斯国家实验室使用了MANIAC II代码生成了该65000以内的素数构成的螺旋[2][1][3]。1964年3月,马丁·加德纳 在他出版的书籍——《趣味数学》上写了一篇关于质数螺旋的内容[1]。质数螺旋之后也出现在了《科学美国人》的杂志首页上。
此条目可参照英语维基百科相应条目来扩充。 (2021年6月9日) |
在《科学美国人》杂志的附录中[4]提及到,加德纳指出,爬虫两栖类学者劳伦斯·门罗·克劳伯在1932年——在乌拉姆的发现之前30多年——的美国数学学会上所做的报告中,便有为了研究富素数二次多项式而将素数排列为二维结构的例子。与乌拉姆不同的是,克劳伯的数列不是以正方形结构,而是用三角形来写的。[5]
构造
乌拉姆是写下了一个正方形的数组来构造了这个螺旋数组,从1开始且开始按照这个螺旋规律:
他然后圈起了所有的素数(如下图):
令他吃惊的是这堆圈起来的数字趋向于与对角线排成一行。在200×200的乌拉姆素数表当中(上图),其中对角线都是清晰可见且完成整一个表,而且水平线和垂直线都是有证明显著突出素数的样子。
在这堆素数表中,除了2这个偶数是素数外,其它都是由奇数组成的。在质数螺旋里,相邻的对角线都是与每个奇数相交的,毫不奇怪地所有素数都是躺在该螺旋的每个相邻的对角线中。这是从1开始以来,素数有更高的趋势躺在更多的对角线上。
测试到现在为止,都证明出对角线都是以素数组成(如右图)。虽然这个数列看起来好像出现即使不是1的中间数字(实际上那个数字>1)。这也暗示着有许多的整数常量“b”和“c”就得出以下公式:
当数列n每次增加1,一堆的素数就会与更多的素数将会对照出来。
附注
参考资料
外部链接
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.