积分判别法,又称柯西积分判别法、麦克劳林-柯西判别法,是判断一个实级数或数列收敛的方法。当 f ( x ) {\displaystyle f(x)} 非负递减时,级数 ∑ n = 1 ∞ f ( n ) {\displaystyle \sum _{n=1}^{\infty }f(n)} 收敛当且仅当积分 ∫ 1 ∞ f ( x ) d x {\displaystyle \int _{1}^{\infty }f(x)\,dx} 有限。在17、18世纪,马克劳林和奥古斯丁·路易·柯西发展了这个方法。 证明 考虑如下积分 ∫ n n + 1 f ( x ) d x {\displaystyle \int _{n}^{n+1}f(x)\,dx} 注意 f ( x ) {\displaystyle f(x)} 单调递减,因此有: f ( n + 1 ) ≤ ∫ n n + 1 f ( x ) d x ≤ f ( n ) {\displaystyle f(n+1)\leq \int _{n}^{n+1}f(x)\,dx\leq f(n)} 进一步地,考虑如下求和: ∑ n = 1 k f ( n + 1 ) ≤ ∑ n = 1 k ∫ n n + 1 f ( x ) d x ≤ ∑ n = 1 k f ( n ) {\displaystyle \sum _{n=1}^{k}f(n+1)\leq \sum _{n=1}^{k}\int _{n}^{n+1}f(x)\,dx\leq \sum _{n=1}^{k}f(n)} 中间项的和为: ∑ n = 1 k ∫ n n + 1 f ( x ) d x = ∫ 1 k + 1 f ( x ) d x {\displaystyle \sum _{n=1}^{k}\int _{n}^{n+1}f(x)\,dx=\int _{1}^{k+1}f(x)\,dx} 对上述不等式取极限 k → ∞ {\displaystyle k\to \infty } ,有: ∑ n = 1 ∞ f ( n + 1 ) ≤ ∫ 1 ∞ f ( x ) d x ≤ ∑ n = 1 ∞ f ( n ) {\displaystyle \sum _{n=1}^{\infty }f(n+1)\leq \int _{1}^{\infty }f(x)\,dx\leq \sum _{n=1}^{\infty }f(n)} 因此,若积分 ∫ 1 ∞ f ( x ) d x {\displaystyle \int _{1}^{\infty }f(x)\,dx} 收敛,则无穷级数 ∑ n = 1 ∞ f ( n ) {\displaystyle \sum _{n=1}^{\infty }f(n)} 收敛;若积分发散,则此级数发散。 例子 调和级数 ∑ n = 1 ∞ 1 n {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n}}} 是发散的,因为它的原函数是自然对数: ∫ 1 M 1 x d x = ln x | 1 M = ln M → ∞ {\displaystyle \int _{1}^{M}{\frac {1}{x}}\,dx=\ln x{\Bigr |}_{1}^{M}=\ln M\to \infty } ,当 M → ∞ {\displaystyle M\to \infty } 时。 而级数 ∑ n = 1 ∞ 1 n 1 + ε {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{1+\varepsilon }}}} 则对所有的ε > 0都是收敛的,因为: ∫ 1 M 1 x 1 + ε d x = − 1 ε x ε | 1 M = 1 ε ( 1 − 1 M ε ) ≤ 1 ε {\displaystyle \int _{1}^{M}{\frac {1}{x^{1+\varepsilon }}}\,dx=-{\frac {1}{\varepsilon x^{\varepsilon }}}{\biggr |}_{1}^{M}={\frac {1}{\varepsilon }}{\Bigl (}1-{\frac {1}{M^{\varepsilon }}}{\Bigr )}\leq {\frac {1}{\varepsilon }}} ,对于所有 M ≥ 1. {\displaystyle M\geq 1.} 参考 Knopp, Konrad, "Infinite Sequences and Series", Dover publications, Inc., New York, 1956. (§ 3.3) ISBN 0486601536 Whittaker, E. T., and Watson, G. N., A Course in Modern Analysis, fourth edition, Cambridge University Press, 1963. (§ 4.43) ISBN 0521588073 Wikiwand - on Seamless Wikipedia browsing. On steroids.